Action mechanisms of anesthetics remain unclear because of difficulty in explaining how structurally different anesthetics cause similar effects. In Saccharomyces cerevisiae, local anesthetics and antipsychotic phenothiazines induced responses similar to those caused by glucose starvation, and they eventually inhibited cell growth. These drugs inhibited glucose uptake, but additional glucose conferred resistance to their effects; hence, the primary action of the drugs is to cause glucose starvation.
View Article and Find Full Text PDFIt is unclear whether local anesthetics, such as tetracaine, and antipsychotics, such as phenothiazines, act on lipids or proteins. In Saccharomyces cerevisiae, these drugs inhibit growth, translation initiation, and actin polarization, and induce cell lysis at high concentrations. These activities are likely due to the cationic amphiphilic structure common to these agents.
View Article and Find Full Text PDFCdc55, a regulatory B-subunit of protein phosphatase 2A (PP2A) complex, is essential for the spindle assembly checkpoint (SAC) in budding yeast, but the regulation and molecular targets of PP2A-Cdc55 have not been clearly defined or are controversial. Here, we show that an important target of Cdc55 in the SAC is the anaphase-promoting complex (APC) coupled with Cdc20 and that APC-Cdc20 is kept inactive by dephosphorylation by nuclear PP2A-Cdc55 when spindle is damaged. By isolating a new class of Cdc55 mutants specifically defective in the SAC and by artificially manipulating nucleocytoplasmic distribution of Cdc55, we further show that nuclear Cdc55 is essential for the SAC.
View Article and Find Full Text PDFMitotic cyclin-dependent kinase (CDK) is activated by Cdc25 phosphatase through dephosphorylation at the Wee1-mediated phosphorylation site. In Saccharomyces cerevisiae, regulation of Mih1 (Cdc25 homologue) remains unclear because inactivation/degradation of Swe1 (Wee1 homologue) is the main trigger for G2/M transition. By deleting all mitotic cyclins except Clb2, a strain was created where Mih1 became essential for mitotic entry at high temperatures.
View Article and Find Full Text PDFLocal anesthetics and antipsychotic phenothiazines cause a rapid shutdown of both actin polarization and translation initiation in yeast cells, like some environmental stresses. These compounds all have an amphiphilic structure, surfactant activity and the ability to lyse yeast cells. To elucidate the structures responsible for the shutdown activity and cell lysis, we investigated a variety of amphiphiles.
View Article and Find Full Text PDFRecruitment of substrates to the 26S proteasome usually requires covalent attachment of the Lys48-linked polyubiquitin chain. In contrast, modifications with the Lys63-linked polyubiquitin chain and/or monomeric ubiquitin are generally thought to function in proteasome-independent cellular processes. Nevertheless, the ubiquitin chain-type specificity for the proteasomal targeting is still poorly understood, especially in vivo.
View Article and Find Full Text PDFSUMO E3 ligase of the Siz/PIAS family that promotes sumoylation of target proteins contains SAP motif in its N-terminal region. The SAP motif with a consensus sequence of 35 residues was first proposed to be as a new DNA binding motif found in diverse nuclear proteins involved in chromosomal organization. We have determined solution structures of the SAP domains of SUMO ligases Siz1 from yeast and rice by NMR spectroscopy, showing that the structure of the SAP domain (residues 2-105) of rice Siz1 is a four-helix bundle with an up-down-extended loop-down-up topology, whereas the SAP domain (residues 1-111) of yeast Siz1 is comprised of five helices where the fifth helix alpha5 causes a significant change in the alignment of the four-helix bundle characteristic to the SAP domains of the Siz/PIAS family.
View Article and Find Full Text PDFSUMO (small ubiquitin-related modifier), a 12 kDa protein with distant similarity to ubiquitin, covalently binds to many proteins in eukaryotic cells. In contrast to ubiquitination, which mainly regulates proteasome-dependent degradation and protein sorting, sumoylation is known to regulate assembly and disassembly of protein complexes, protein localization and stability, and so on. SUMO is primarily localized to the nucleus, and many SUMO substrates are nuclear proteins involved in DNA transaction.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2007
Metazoan arrestin proteins bind to seven-transmembrane proteins, mediate their internalization and play central roles in the subsequent signal transduction pathway. In Saccharomyces cerevisiae, there are several arrestin-related proteins. One of those proteins, Rod1, has been identified to have the ability to confer resistance to o-dinitrobenzene.
View Article and Find Full Text PDFThe 26S proteasome consists of the 20S proteasome (core particle) and the 19S regulatory particle made of the base and lid substructures, and it is mainly localized in the nucleus in yeast. To examine how and where this huge enzyme complex is assembled, we performed biochemical and microscopic characterization of proteasomes produced in two lid mutants, rpn5-1 and rpn7-3, and a base mutant DeltaN rpn2, of the yeast Saccharomyces cerevisiae. We found that, although lid formation was abolished in rpn5-1 mutant cells at the restrictive temperature, an apparently intact base was produced and localized in the nucleus.
View Article and Find Full Text PDFThe MPT5/HTR1/UTH4/PUF5 gene encodes an RNA-binding Puf-family protein in Saccharomyces cerevisiae. The Deltampt5 cells exhibit pleiotropic phenotypes, including the G2/M arrest of the cell cycle and weakened cell wall at high temperatures. The Deltampt5 disruptant was also hydroxyurea (HU) sensitive.
View Article and Find Full Text PDFThe Smt3 (SUMO) protein is conjugated to substrate proteins through a cascade of E1, E2, and E3 enzymes. In budding yeast, the E3 step in sumoylation is largely controlled by Siz1p and Siz2p. Analysis of Siz- cells shows that SUMO E3 is required for minichromosome segregation and thus has a positive role in maintaining the fidelity of mitotic transmission of genetic information.
View Article and Find Full Text PDFSUMO (small ubiquitin-like modifier)/Smt3 (suppressor of mif two) is a member of the ubiquitin-related protein family and is known to conjugate with many proteins. In the sumoylation pathway, SUMO/Smt3 is transferred to substrate lysine residues through the thioester cascade of E1 (activating enzyme) and E2 (conjugating enzyme), and E3 (SUMO ligase) functions as an adaptor between E2 and each substrate. Yeast Ull1 (ubiquitin-like protein ligase 1)/Siz1, a PIAS (protein inhibitor of activated STAT)-type SUMO ligase, modifies both cytoplasmic and nuclear proteins.
View Article and Find Full Text PDFMessenger RNA decay, which is a regulated process intimately linked to translation, begins with the deadenylation of the poly(A) tail at the 3' end. However, the precise mechanism triggering the first step of mRNA decay and its relationship to translation have not been elucidated. Here, we show that the translation termination factor eRF3 mediates mRNA deadenylation and decay in the yeast Saccharomyces cerevisiae.
View Article and Find Full Text PDFBiochem Biophys Res Commun
July 2003
Rsp5 is an essential ubiquitin ligase in Saccharomyces cerevisiae and is concerned with many functions such as endocytosis and transcription through ubiquitination of various substrates. Bul1 or its homologue Bul2 binds to Rsp5 through the PY-motif and the bul1 bul2 double mutant is sensitive to various stresses. We demonstrate here that heat shock element (HSE)-mediated gene expression was defective in both rsp5-101 and bul1 bul2 mutants under high temperature condition.
View Article and Find Full Text PDFSUMO/Smt3, a ubiquitin-like modifier, is known to conjugate other proteins and modulate their functions in various processes. Recently, Ull1/Siz1 was discovered as a novel PIAS-type E3 required for septin sumoylation in yeast. We demonstrate here that the second PIAS-type Nfi1/Siz2 is also a SUMO ligase.
View Article and Find Full Text PDFBackground: In response to various stressful situations, including diauxic conditions, the Msn2 and Msn4 transcription factors induce STRE-mediated gene expression of many stress responsive genes in Saccharomyces cerevisiae. This is called the general stress response. The whi2 cells in the stationary phase are smaller than wild-type cells.
View Article and Find Full Text PDF