Publications by authors named "Yoshiki Omori"

Macroalgae can cycle arsenic (As) in the environment. In this study, the role of iron (Fe) plaque manipulation at active sites in the As biotransformation mechanism was investigated. The strain of marine macroalgal species, Pyrophia yezoensis, was inoculated in association with arsenate (As(V)) (1.

View Article and Find Full Text PDF

The biotransformation and detoxification mechanisms of arsenic (As) species have been active research topics because of their significance to environmental and human health. Biotransformation of As in phytoplankton has been extensively studied. However, how different growth phases of phytoplankton impact As biotransformation in them remains uncertain.

View Article and Find Full Text PDF

Algae accumulate and metabolize arsenic (As) and facilitate cycling and speciation of As in seawater. The laboratory-controlled macroalgal cultures were exposed to different molar ratios of As(V) and phosphate (P) in seawater for evaluating the uptake and metabolism of As, as a function of As(V) detoxification through biotransformation. Chlorophyll fluorescence of algal species was not significantly affected by the culture conditions (p > 0.

View Article and Find Full Text PDF