Publications by authors named "Yoshiki Chujo"

Although luminescent aluminum compounds have been utilized for emitting and electron transporting layers in organic light-emitting diodes, most of them often exhibit not phosphorescence but fluorescence with lower photoluminescent quantum yields in the aggregated state than those in the amorphous state due to concentration quenching. Here we show the synthesis and optical properties of β-diketiminate aluminum complexes, such as crystallization-induced emission (CIE) and room-temperature phosphorescence (RTP), and the substituent effects of the central element. The dihaloaluminum complexes were found to exhibit the CIE property, especially RTP from the diiodo complex, while the dialkyl ones showed almost no emission in both solution and solid states.

View Article and Find Full Text PDF

Various kinds of boron complexes have been utilized as functional luminescent materials. However, only a limited number of emissive complexes containing other group 13 elements have been reported. Herein, we report the synthesis and optical properties of luminescent β-diketiminate complexes containing a series of group 13 elements.

View Article and Find Full Text PDF

Regioregular and random conjugated polymers based on a boron-fused azomethine unit were synthesized by Sonogashira-Hagihara cross coupling reaction. Although these polymers exhibited similar optical properties in the solution states, a distinct difference was observed in the aggregation forming ability in the film states; scanning electron microscope (SEM) observation indicated the existence of fiber-like aggregates in the spin-coated film of the regioregular polymer, while regiorandom polymer showed no aggregate in the film state. Accordingly, the UV-vis absorption spectrum of the regioregular polymer showed an increased shoulder peak due to the aggregate formation, whereas the random one showed no change.

View Article and Find Full Text PDF

We synthesized new binuclear boron complexes based on pyrazine with ortho and para substitution patterns. It was demonstrated that the para-linked complexes possess a significantly narrow energy gap between highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO), leading to their far-red to near-infrared emission properties. Meanwhile, the ortho-substituted complex showed orange emission.

View Article and Find Full Text PDF

We synthesized two types of the regioisomers fused by a phenylnaphthalene ring with variable connection points to the -carborane scaffold. In this paper, we describe their photoluminescence (PL) properties and detailed photochemical mechanisms. According to the series of optical measurements, interestingly, they showed different PL characters in terms of wavelength and the dual-emission character despite that they have the common aromatic unit.

View Article and Find Full Text PDF

A novel molecular design for showing near-infrared (NIR) emission is still required for satisfying growing demands for NIR-light technology. In this research, hypervalent compounds with germanium (Ge)-fused azobenzene (GAz) scaffolds were discovered that can exhibit NIR emission (λ =690∼721 nm, Φ =0.03∼0.

View Article and Find Full Text PDF

Herein, we report the unique solid-state excimer emission of three types of acridine-tethered o-carboranes with variable degrees of methylation at the o-carborane unit. They all showed columnar packing structures based on dimer formation, and two types of π-overlapping motifs were alternately stacked. From the photoluminescence (PL) measurements on the crystalline samples, it was found that three types of luminescence bands can simultaneously appear: monomer emission, excimer emission from the moderately π-stacked intra-dimer unit, and excimer emission from the widely π-stacked inter-dimer unit.

View Article and Find Full Text PDF

We report a new concept for the turn-on fluoride sensor based on the aggregation of dye-modified polyhedral oligomeric silsesquioxane (POSS). The dye-modified POSS aggregation initially shows weak fluorescence, while intense fluorescence can be obtained when fluoride breaks POSS cores following dye release.

View Article and Find Full Text PDF

We report development of luminescent ionic salts consisting of the boron ketoiminate structure, which is one of the robust skeletons for expressing aggregation-induced emission (AIE) properties. From the formation of the boron-centered spiro structure with the ketoiminate ligands, we obtained stable ionic salts with variable anions. Since the ionic salts show s below 100 °C, it was shown that these salts can be classified as an ionic liquid.

View Article and Find Full Text PDF

In this review, we describe recent progress on stimuli-responsive hybrid materials based on polyhedral oligomeric silsesquioxane (POSS) and their applications as a chemical sensor. In particular, we explain the unique functions originating from molecular assembly concerning POSS-containing soft materials mainly from our studies. POSS has an inorganic cubic core composed of silicon-oxygen (Si-O) bonds and organic substituents at each vertex.

View Article and Find Full Text PDF

Invited for the cover of this issue is the group of Kazuo Tanaka at Kyoto University. The image depicts the control of solid-state dual-emissive properties by modulating the intramolecular hydrogen bonding in boron clusters. Read the full text of the article at 10.

View Article and Find Full Text PDF

It is still challenging to realize a dual-emission system, in which two luminescent bands simultaneously appear by photoexcitation, in solid with organic dyes due to the difficulty in regulation of electronic properties in the excited state and concentration quenching. o-Carborane is known to be a versatile platform for constructing solid-state emitters since the sphere boron cluster is favorable for suppressing intermolecular interactions and subsequently concentration quenching. Here, we show solid-state dual-emissive o-carborane derivatives.

View Article and Find Full Text PDF

Development of novel near-infrared (NIR) emitters is essential for satisfying the growing demands of advancing optical telecommunication and medical technology. We synthesized elemental skeletons composed of robust π-conjugated systems including two boron-fused azo groups, which showed an intense emission in the red or near-infrared (NIR) region both in solution and solid states. Two types of bisboron complexes with different aromatic linkers showed emission properties with larger bathochromic shifts and emission efficiencies in solution than the corresponding monoboron complex.

View Article and Find Full Text PDF

We report the synthesis and absorption properties of homopolymers consisting of 1,3,4,6,9b-pentaazaphenalene (5AP). Oxidative polymerization in the Scholl reaction was accomplished, and various lengths of homopolymers can be isolated. It should be noted that we scarcely observed the generation of structural isomers at the connecting points, which is often observed in this type of reaction.

View Article and Find Full Text PDF

Complexation of π-conjugated ligands by metal or semimetal ions leads to the enhancement of the planarity and rigidity of π-conjugated systems. Boron, especially, has played a central role in the design of luminescent main-group complexes. However, these complexes still suffer the disadvantage of aggregation-caused quenching as well as typical organic fluorophores.

View Article and Find Full Text PDF

We developed novel room-temperature stimuli-responsive N-heteroacene-based liquid materials bearing a chiral alkyl chain. When these liquid materials were exposed to HCl vapor as an external stimulus, a disordered-ordered state change occurred immediately to yield self-assembled solid states from fluidic liquids. The self-assembly mechanism during this state change was evaluated by experimental observations and molecular dynamics simulations over various spatiotemporal scales.

View Article and Find Full Text PDF

Although excimer emission is a useful luminescent phenomenon for fabricating optical sensors and probes, it is difficult to apply excimer emission for film sensors due to critical concentration quenching in the solid state. Therefore, robust molecular designs for solid-state excimer emission are still being explored. One of the key examples is the previously reported acridine-ethynyl--carborane , which showed a bright solid-state excimer emission assisted by characteristic CH···N interactions.

View Article and Find Full Text PDF

Leakage of volatile organic compounds (VOCs) is one of the most severe industrial problems, because it can cause environmental pollution, global warming, fire, and explosion. Hence, the visualization of leakage is an essential technology to detect it at an early stage. Molecular crystals, fluorescence color of which can be changed by the exposure to VOCs could potentially serve as the sensing materials for realizing rapid and facile VOC detection.

View Article and Find Full Text PDF

The dynamic and reversible changes of coordination numbers between five and six in solution and solid states, based on hypervalent tin(IV)-fused azobenzene (TAz) complexes, are reported. It was found that the TAz complexes showed deep-red emission owing to the hypervalent bond composed of an electron-donating three-center four-electron (3c-4e) bond and an electron-accepting nitrogen-tin (N-Sn) coordination. Furthermore, hypsochromic shifts in optical spectra were observed in Lewis basic solvents because of alteration of the coordination number from five to six.

View Article and Find Full Text PDF

Thermally stable dual emission followed by white-light luminescence from hybrid materials is reported. Hybrid films were prepared with a spin-coating method with the mixture solution containing tetraphenylethene (TPE)-integrated polyhedral oligomeric silsesquioxane (POSS) and poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene vinylene] (). TPE-tethered POSS () showed high compatibility with .

View Article and Find Full Text PDF

We demonstrate that multi-fluorinated boron-fused azobenzene (BAz) complexes can work as a strong electron acceptor in electron donor-acceptor (D-A) type π-conjugated polymers. Position-dependent substitution effects were revealed, and the energy level of the lowest unoccupied molecular orbital (LUMO) was critically decreased by fluorination. As a result, the obtained polymers showed near-infrared (NIR) emission (λ =758-847 nm) with high absolute photoluminescence quantum yield (Φ =7-23%) originating from low-lying LUMO energy levels of the BAz moieties (-3.

View Article and Find Full Text PDF

Azomethine (C=N) and azo (N=N) scaffolds are a part of structural units in poly(p-phenylene azomethine) (PAM) and poly(p-phenylene azo) (PAZ), respectively. Poly(p-phenylene vinylene) (PPV) is known to be one of luminescent π-conjugated polymers, meanwhile PAM and PAZ, which are the aza-substituted PPV analogues, are regarded as weak or no emissive materials. However, by the boron complexation, intense emission can be induced.

View Article and Find Full Text PDF

Because of their unique luminescence properties, such as aggregation-induced emission (AIE), intense solid-state luminescence and stimuli-responsive luminochromism, aryl-substituted o-carboranes have attracted attention as a platform for developing functional optoelectronic materials. However, there still remains one fundamental issue with the detailed mechanism of solution quenching in AIE behaviors. Aryl-modified o-carboranes with AIE properties exhibit intense emission not in solution but in the solid state.

View Article and Find Full Text PDF

Most organic luminescent dyes usually show poor emission in solid due to aggregation-caused quenching due to nonspecific intermolecular interaction, such as π-π stacking. Furthermore, since commodity molecules having near-infrared (NIR) emission properties tend to have extended π-conjugated systems, development of luminescent organic materials with solid-state NIR emission has been still challenging. Herein, the series of the azobenzene complexes with the perpendicularly-protruded aryl derivative at the boron atom toward π-conjugated system is synthesized.

View Article and Find Full Text PDF

A chloro-substituted boron-fused azomethine complex (BAmCl) having a stereogenic boron center was synthesized for obtaining a luminescent chiral crystal. We succeeded in isolating the (R)- and (S)-enantiomers of BAmCl and preparing the homochiral polymorphic crystal, while we obtained the racemic crystal with rac-BAmCl. Single crystal X-ray diffraction analyses suggest that a variety of intermolecular interaction patterns and intrinsic flexibility of the molecular framework should play a significant role in stabilizing the homochiral crystal.

View Article and Find Full Text PDF