Publications by authors named "Yoshiki Amari"

Soybean 7S globulin, known as β-conglycinin, has been shown to regulate human plasma cholesterol and triglyceride levels. Furthermore, the α' subunit of β-conglycinin has specifically been shown to possess low-density lipoprotein (LDL)-cholesterol-lowering activity. Therefore, accumulation of the α' subunit of β-conglycinin in rice seeds could lead to the production of new functional rice that could promote human health.

View Article and Find Full Text PDF

Hypercholesterolemia, a form of cardiovascular disease, is one of the leading causes of deaths worldwide. Lactostatin (Ile-Ile-Ala-Glu-Lys), derived from β-lactoglobulin in cow's milk, is a bioactive peptide with hypocholesterolemic activity higher than sitosterol, a known anti-hypercholesterolemic drug. Here, we successfully developed a transgenic rice accumulating a much higher level of lactostatin by inserting 29 IIAEK sequences into the structurally flexible (nonconserved) regions of soybean seed storage protein, A1aB1b, and introducing it into LGC-1 (low glutelin content mutant 1) as host variety.

View Article and Find Full Text PDF

Improving the nutraceutical value of rice would positively impact the health and well-being of rice consumers worldwide. Based on the three-dimensional structure of soybean beta-conglycinin, we designed a beta subunit with a strong phagocytosis-stimulating activity (mbeta subunit). Here, we describe the genetic modification and production of rice seeds containing the mbeta subunit as part of our aim to develop a food material that promotes human health.

View Article and Find Full Text PDF

The alpha' and beta subunits of soybean beta-conglycinin were expressed in rice seeds in order to improve the nutritional and physiological properties of rice as a food. The alpha' subunit accumulated in rice seeds at a higher level than the beta subunit, but no detectable difference in mRNA transcription level between subunits was observed. Sequential extraction results indicate that the alpha' subunit formed one or more disulphide bonds with glutelin.

View Article and Find Full Text PDF