The circadian clock is a biological timekeeper that operates through transcription-translation feedback loops in mammals. Cryptochrome 1 (CRY1) and Cryptochrome 2 (CRY2) are highly conserved core clock components having redundant and distinct functions. We recently identified the CRY1- and CRY2-selective compounds KL101 and TH301, respectively, which provide useful tools for the exploration of isoform-selective CRY regulation.
View Article and Find Full Text PDFCryptochrome 1 (CRY1) and CRY2 are core regulators of the circadian clock, and the development of isoform-selective modulators is important for the elucidation of their redundant and distinct functions. Here, we report the identification and functional characterization of a small-molecule modulator of the mammalian circadian clock that selectively controls CRY1. Cell-based circadian chemical screening identified a thienopyrimidine derivative KL201 that lengthened the period of circadian rhythms in cells and tissues.
View Article and Find Full Text PDFCRY1 and CRY2 are essential components of the circadian clock controlling daily physiological rhythms. Accumulating evidences indicate distinct roles of these highly homologous proteins, in addition to redundant functions. Therefore, the development of isoform-selective compounds represents an effective approach towards understanding the similarities and differences of CRY1 and CRY2 by controlling each isoform individually.
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
May 2016
Coenzyme A (CoA) plays pivotal roles in a variety of metabolic pathways in all organisms. The biosynthetic pathway of CoA is strictly regulated by feedback inhibition. In the hyperthermophilic archaeon Thermococcus kodakarensis, ketopantoate reductase (KPR), which catalyzes the NAD(P)H-dependent reduction of 2-oxopantoate, is a target of feedback inhibition by CoA.
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
September 2015
Proper protein folding is an essential process for all organisms. Prefoldin (PFD) is a molecular chaperone that assists protein folding by delivering non-native proteins to group II chaperonin. A heterohexamer of eukaryotic PFD has been shown to specifically recognize and deliver non-native actin and tubulin to chaperonin-containing TCP-1 (CCT), but the mechanism of specific recognition is still unclear.
View Article and Find Full Text PDFSmall heat shock proteins (sHsps) play a role in preventing the fatal aggregation of denatured proteins in the presence of stresses. The sHsps exist as monodisperse oligomers in their resting state. Because the hydrophobic N-terminal regions of sHsps are possible interaction sites for denatured proteins, the manner of assembly of the oligomer is critical for the activation and inactivation mechanisms.
View Article and Find Full Text PDF