Publications by authors named "Yoshikazu Shinoda"

Omnipause neurons (OPNs) in the nucleus raphe interpositus have tonic activity while the eyes are stationary ("fixation") but stop firing immediately before and during saccades. To locate the source of suppression, we analyzed synaptic inputs from the rostral and caudal superior colliculi (SCs) to OPNs by using intracellular recording and staining, and investigated pathways transmitting the inputs in anesthetized cats of both sexes. Electrophysiologically or morphologically identified OPNs received monosynaptic excitation from the rostral SCs with contralateral dominance, and received disynaptic inhibition from the caudal SCs with ipsilateral dominance.

View Article and Find Full Text PDF

This article is dedicated to the memory of Masao Ito. Masao Ito made numerous important contributions revealing the function of the cerebellum in motor control. His pioneering contributions to cerebellar physiology began with his discovery of inhibition and disinhibition of target neurons by cerebellar Purkinje cells, and his discovery of the presence of long-term depression in parallel fiber-Purkinje cell synapses.

View Article and Find Full Text PDF

We review neural connections of the superior colliculus (SC) and brainstem saccade-related neurons in relation to saccade generation mechanism. The caudal and rostral SC play a role in saccade generation and visual fixation, respectively. This functional differentiation suggests that different connections should exist between these two SC areas and their brainstem target neurons.

View Article and Find Full Text PDF

The mammalian cerebellar cortex is compartmentalized, both anatomically and histochemically, into multiple parasagittal bands. To characterize the multiple zonal patterns of pontocerebellar mossy fiber projection, single neurons in the basilar pontine nucleus (BPN) were labeled by injecting biotinylated dextran amine into the BPN, and the entire axonal trajectory of single labeled neurons (n = 25) was reconstructed in relation to aldolase C compartments of Purkinje cells in rats. Single pontocerebellar axons, after passing through the contralateral middle cerebellar peduncle, ran transversely in the deep cerebellar white matter toward and often across the midline, and on their ways, gave rise to 2-10 primary collaterals at almost right angles in specific lobules only contralaterally or bilaterally with contralateral predominance.

View Article and Find Full Text PDF

Sensory signals for eye movements (visual and vestibular) are initially coded in different frames of reference but finally translated into common coordinates, and share the same final common pathway, namely the same population of extraocular motoneurons. From clinical studies in humans and lesion studies in animals, it is generally accepted that voluntary saccadic eye movements are organized in horizontal and vertical Cartesian coordinates. However, this issue is not settled yet, because neural circuits for vertical saccades remain unidentified.

View Article and Find Full Text PDF

The caudal fastigial nucleus (FN) is known to be related to the control of eye movements and projects mainly to the contralateral reticular nuclei where excitatory and inhibitory burst neurons for saccades exist [the caudal portion of the nucleus reticularis pontis caudalis (NRPc), and the rostral portion of the nucleus reticularis gigantocellularis (NRG) respectively]. However, the exact reticular neurons targeted by caudal fastigioreticular cells remain unknown. We tried to determine the target reticular neurons of the caudal FN and superior colliculus (SC) by recording intracellular potentials from neurons in the NRPc and NRG of anesthetized cats.

View Article and Find Full Text PDF

Cerebellar climbing fibers (CFs) provide powerful excitatory input to Purkinje cells (PCs), which represent the sole output of the cerebellar cortex. Recent discoveries suggest that CFs have information-rich signaling properties important for cerebellar function, beyond eliciting the well known all-or-none PC complex spike. CF morphology has not been quantitatively analyzed at the same level of detail as its biophysical properties.

View Article and Find Full Text PDF

The saccade trigger signal was proposed by D.A. Robinson, but neural substrates for triggering saccades by inhibiting omnipause neuron (OPN) activity still remain controversial.

View Article and Find Full Text PDF

This study was performed to characterize the properties of the suppression of smooth pursuit eye movement induced by electrical stimulation of the frontal eye field (FEF) in trained monkeys. At the stimulation sites tested, we first determined the threshold for generating electrically evoked saccades (Esacs). We then examined the suppressive effects of stimulation on smooth pursuit at intensities that were below the threshold for eliciting Esacs.

View Article and Find Full Text PDF

Electrical stimulation of the frontal eye field (FEF) has recently been reported to suppress the generation of saccades, which supports the idea that the FEF plays a role in maintaining attentive fixation. This study analyzed the activity of fixation neurons that discharged during fixation in the FEF in relation to visual fixation and saccades in trained monkeys. The neural activity of fixation neurons increased at the start of fixation and was maintained during fixation.

View Article and Find Full Text PDF

Here we review the functional anatomy of brainstem circuits important for triggering saccades. Whereas the rostral part of the superior colliculus (SC) is considered to be involved in visual fixation, the caudal part of the SC plays an important role in generation of saccades. We determined the neural connections from the rostral and caudal parts of the SC to inhibitory burst neurons (IBNs) and omnipause neurons (OPNs) in the nucleus raphe interpositus.

View Article and Find Full Text PDF

The olivocerebellar climbing fiber projection pattern is closely correlated with the pattern of aldolase C expression in cerebellar Purkinje cells. Based on this expression pattern, the olivocerebellar projection can be classified into five "groups" of functional compartments. Each group originates from a subarea within the inferior olive that projects to multiple cortical stripes of Purkinje cells, all of which are either aldolase C positive or aldolase C negative.

View Article and Find Full Text PDF

The neural organization of the pathways from the superior colliculus (SC) to trochlear motoneurons was analyzed in anesthetized cats using intracellular recording and transneuronal labeling techniques. Stimulation of the ipsilateral or contralateral SC evoked excitation and inhibition in trochlear motoneurons with latencies of 1.1-2.

View Article and Find Full Text PDF

It has been tacitly assumed that a long descending motor tract axon consists of a private line connecting the cell of origin to a single muscle, as a motoneuron innervates a single muscle. However, this notion of a long descending motor tract referred to as a private line is no longer tenable, since recent studies have showed that axons of all major long descending motor tracts send their axon collaterals to multiple spinal segments, suggesting that they may exert simultaneous influences on different groups of spinal interneurons and motoneurons of multiple muscles. The long descending motor systems are divided into two groups, the medial and the lateral systems including interneurons and motoneurons.

View Article and Find Full Text PDF

After a saccadic eye movement occurs to an interesting object appearing in the visual field, visual fixation holds its image on the fovea and suppresses saccades to other objects appearing in the visual field. To understand the neural mechanism of visual fixation, the effects of electrical stimulation of the frontal eye field (FEF) on the generation of electrically evoked saccades (Esacs) and the suppression of saccades in trained monkeys were investigated. When the properties of the electrically evoked suppression of visually guided (Vsacs) and memory-guided saccades (Msacs) were examined, two types of suppression were found.

View Article and Find Full Text PDF

The caudal part of the superior colliculus (SC) plays an important role in the generation of saccades, whereas the rostral part of the SC is considered to be involved in visual fixation. The present study was performed to determine neural connections from the rostral and caudal parts of the SC to inhibitory burst neurons (IBNs) and pause neurons (PNs) in the nucleus raphe interpositus in the anesthetized cat, and to reveal the functional role of the rostral SC on eye movements. The intracellular potentials from IBNs and PNs were recorded, and the effects of stimulation of the SC on these neurons were analyzed.

View Article and Find Full Text PDF

Aldolase C (zebrin) expression in Purkinje cells reveals stripe-shaped compartments in the cerebellar cortex. However, it is not clear how these compartments are related to cerebellar functional localization. Therefore, we identified olivocerebellar projections to aldolase C compartments by labeling climbing fibers with biotinylated dextran injected into various small areas within the inferior olive in rats.

View Article and Find Full Text PDF

To understand the neural mechanism of fixation, we investigated effects of electrical stimulation of the frontal eye field (FEF) and its vicinity on visually guided (Vsacs) and memory-guided saccades (Msacs) in trained monkeys and found that there were two types of suppression induced by the electrical stimulation: suppression of ipsilateral saccades and suppression of bilateral saccades. In this report, we characterized the properties of the suppression of bilateral Vsacs and Msacs. Stimulation of the bilateral suppression sites suppressed the initiation of both Vsacs and Msacs in all directions during and approximately 50 ms after stimulation but did not affect the vector of these saccades.

View Article and Find Full Text PDF

When a saccade occurs to an interesting object, visual fixation holds its image on the fovea and suppresses saccades to other objects. Electrical stimulation of the frontal eye field (FEF) has been reported to elicit saccades, and recently also to suppress saccades. This study was performed to characterize properties of the suppression of visually guided (Vsacs) and memory-guided saccades (Msacs) induced by electrical stimulation of the FEF in trained monkeys.

View Article and Find Full Text PDF

The cerebellar cortex consists of multiple longitudinal bands defined by their olivocerebellar projection. Single olivocerebellar axons project to a narrow longitudinal band in the cerebellar cortex and to the cerebellar nucleus with their axon collaterals. This olivocortical and olivonuclear organization is related to the functional compartmentalization of the cerebellar system.

View Article and Find Full Text PDF

In this chapter, we describe our recent work on the divergent properties of single, long descending motor-tract neurons in the spinal cord, using the method of intra-axonal staining with horseradish peroxidase, and serial-section, three-dimensional reconstruction of their axonal trajectories. This work provides evidence that single motor-tract neurons are implicated in the neural implementation of functional synergies for head movements. Our results further show that single medial vestibulospinal tract (MVST) neurons innervate a functional set of multiple neck muscles, and thereby implement a canal-dependent, head-movement synergy.

View Article and Find Full Text PDF