Publications by authors named "Yoshikazu Miyake"

Intraoperative electron radiotherapy (IOERT), which is an accelerated partial breast irradiation method, has been used for early-stage breast cancer treatment. In IOERT, a protective disk is inserted behind the target volume to minimize the dose received by normal tissues. However, to use such a disk, the surgical incision must be larger than the field size because the disk is manufactured from stiff and unyielding materials.

View Article and Find Full Text PDF

The application of neoadjuvant androgen deprivation (NAD) in prostate cancer leads to a reduction in prostate volume, and the trends in volume reduction differ according to the treatment duration of NAD. A reduction in volume during external beam radiation therapy may lead to the exposure of normal tissues to an unexpected dose. In fact, prostate volume reductions have primarily been reported in European and American institutions.

View Article and Find Full Text PDF

Metal dental restoration materials cause dose enhancement upstream and dose disturbance downstream of the high-density inhomogeneous regions in which these materials are used. In this study, we evaluated the impact of a dental metallic crown (DMC) on intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) for head and neck cancer. Additionally, the possibility of sparing the oral mucosa from dose enhancement using an individual intraoral mouthpiece was evaluated.

View Article and Find Full Text PDF

The synthesis of zeolitic imidazolate framework-8 (ZIF-8) films in an aqueous system was achieved. ZIF-8 films with controllable thickness were successfully grown on a modified substrate at room temperature. The 3-(2-imidazolin-1-yl)propyltriethoxysilane (IPTES) was used to first form a pseudo-surface of ZIF-8 on a glass substrate, followed by layer-by-layer growth.

View Article and Find Full Text PDF

Mechanochemical dry conversion that only uses zinc oxide and an imidazole ligand proved to be effective and reliable for fabrication of a zeolitic imidazolate framework with a polycrystalline grain boundary and a core-shell structure. The zinc oxide crystals are converted into a zeolitic imidazolate framework to a depth of approx. 10 nm below the surface.

View Article and Find Full Text PDF

Zeolite rho was prepared by hydrothermal synthesis using an 18-crown-6 ether (18C6) as a structure-directing agent, and the effects of the calcination temperature for removal of 18C6 on the physicochemical properties and CO(2)-adsorption properties were investigated. CO(2) adsorption on zeolite rho calcined at 150°C was lower than that on samples calcined at temperatures above 300°C. For samples calcined above 300°C, CO(2) adsorption increased with increasing calcination temperature up to 400°C.

View Article and Find Full Text PDF

There are many viewpoints on the formation mechanisms for zeolites, but the details are not clear. An understanding of the elementary steps for their formation is important for the development of large-scale membranes and efficient manufacturing processes. In this study, the effects of silicon, aluminum, and the incorporation of 18-crown-6 (18C6) ether, on the formation of zeolite rho, using 18C6 as the structure directing agent (SDA) have been investigated by using field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray fluorescence spectrometry (EDX), nuclear magnetic resonance spectroscopy (NMR), thermo gravimetric analysis (TGA), and the pH measurement.

View Article and Find Full Text PDF

An alkylimidazolium-based long-chain ionic liquid (LCIL) was immobilized in silica nanopores via a supramolecular assembly approach. To discuss the characteristic features of LCIL in a confined nanospace, except for the characteristics of the host materials, we have prepared the silica host with monodisperse morphology and a nanostructured system to immobilize LCIL. The nanostructure is composed of three distinct regions: the silica framework, the hydrophobic interior of the alkyl chains, and the organic-inorganic ionic interface.

View Article and Find Full Text PDF

Aminopropyl-functionalized mesoporous silica microspheres (AF-MSM) were synthesized by a simple one-step modified Stöber method. Dodecylamine (DDA) was used as the catalyst for the hydrolysis and condensation of the silica source and as the molecular template to prepare the ordered mesopores. The mesoporous silica surfaces were modified to aminopropyl groups by the co-condensation of tetraethoxysilane (TEOS) with 3-aminopropyltriethoxysilane (APTES), up to a maximum of 20mol.

View Article and Find Full Text PDF

Monodisperse titania spheres with particle diameters in the range 380-960 nm were successfully synthesized by hydrolysis and condensation of titanium tetraisopropoxide. The preparation was performed using ammonia or dodecylamine (DDA) as a catalyst in methanol/acetonitrile co-solvent at room temperature. The samples were characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, dynamic light scattering, and nitrogen sorption measurement.

View Article and Find Full Text PDF

Zeolite Na-A crystals dissolved in a HCl solution were used as a single-source of silicon and aluminum for the synthesis of mesoporous aluminosilicates via a template-assisted method with an organic base tetramethylammonium hydroxide (TMAOH). Amphiphilic triblock copolymer Pluronic F127 (EO(106)PO(70)EO(106)) was used as template. Increasing the amount of TMAOH in the synthetic solution resulted in an increase in the aluminum content of the products.

View Article and Find Full Text PDF