Publications by authors named "Yoshikazu Kamino"

Objective: The aim of this study is to investigate the osteogenic differentiation human dental follicle cells (hDFCs) cultured with in osteogenic induction medium (OIM) without dexamethasone (DEX), and to analyze the gene expression profile during osteogenic differentiation.

Methods: hDFCs, which isolated from dental follicle tissue from impacted third molar teeth, were cultured with OIM with or without DEX. Osteogenic differentiation of hDFCs was examined using Alkaline phosphatase activity and Arizarin red staining.

View Article and Find Full Text PDF

Saliva is known to play important roles in such functions as swallowing, mastication, speech, and taste. Furthermore, salivary glands synthesize and secrete a number of growth factors involved in cell/tissue homeostasis. It has been demonstrated that IGF-1, which is structurally analogous to insulin, has been shown to be expressed in mouse submandibular glands, and that IGF-1 stimulates DNA synthesis, amino acid uptake, protein synthesis, and glucose transport in various cells.

View Article and Find Full Text PDF

Chronic caffeine exposure during pregnancy has an effect on fetal growth; however, the adverse effects of caffeine on embryogenesis are not well understood and controversial. We used cDNA microarray technology to determine whether caffeine alters gene expressions in a human cytotrophoblast-like cell line, BeWo. We found that the expression of the B-cell CLL/lymphoma 2 (Bcl-2) gene in BeWo cells was down-regulated by caffeine, suggesting that chronic exposure during the gestational period could exert an influence on embryogenesis.

View Article and Find Full Text PDF

Defensins are a family of cationic antimicrobial peptides that participate in host defense. Human beta-defensin (hBD)-2 has a potent bactericidal activity against a wide spectrum of microorganisms. Because human gingival epithelium is constantly exposed to a variety of microbial challenges, it is considered that hBD-2 has an important role in the protective mechanisms against oral bacterial infection.

View Article and Find Full Text PDF