Publications by authors named "Yoshikazu Ishimoto"

Introduction: Studies have reported an association between attention deficit hyperactivity disorder (ADHD) and somatic diseases; however, the correlation of mental disorders with the association between ADHD and somatic diseases remains uninvestigated. This study investigated and compared the prevalence of somatic diseases among adults with/without ADHD, stratified by the presence or absence of mental disorders.

Methods: This cross-sectional study (October 2020-September 2021), using data (June 2013-September 2021) from a Japanese health insurance claims database, included adult participants with a medical record of and receiving medication for ADHD (ADHD group); the control group (matched 1:5 by age/sex) comprised participants without ADHD.

View Article and Find Full Text PDF

Purpose: Our previous study suggested that working conditions might impact work productivity amid the COVID-19 pandemic. This study aimed to investigate the association between working from home (WFH) and depressive symptoms, work productivity, and quality of life (QOL), in undiagnosed workers with attention-deficit/hyperactivity disorder (ADHD) symptoms during the COVID-19 pandemic.

Methods: During the pandemic, the survey was conducted among eligible workers with (N = 904) and without (N = 900) ADHD symptoms based on the Adult ADHD Self-Report Scale [ASRS].

View Article and Find Full Text PDF

Secretory phospholipases A(2) (sPLA(2)s) are a diverse family of low molecular mass enzymes (13-18 kDa) that hydrolyze the sn-2 fatty acid ester bond of glycerophospholipids to produce free fatty acids and lysophospholipids. We have previously shown that group X sPLA(2) (sPLA(2)-X) had a strong hydrolyzing activity toward phosphatidylcholine in low-density lipoprotein (LDL) linked to the formation of lipid droplets in the cytoplasm of macrophages. Here, we show that group V sPLA(2) (sPLA(2)-V) can also cause the lipolysis of LDL, but its action differs remarkably from that of sPLA(2)-X in several respects.

View Article and Find Full Text PDF

Although perturbed lipid metabolism can often lead to skin abnormality, the role of phospholipase A(2) (PLA(2)) in skin homeostasis is poorly understood. In the present study we found that group X-secreted PLA(2) (sPLA(2)-X) was expressed in the outermost epithelium of hair follicles in synchrony with the anagen phase of hair cycling. Transgenic mice overexpressing sPLA(2)-X (PLA2G10-Tg) displayed alopecia, which was accompanied by hair follicle distortion with reduced expression of genes related to hair development, during a postnatal hair cycle.

View Article and Find Full Text PDF

Although the secreted phospholipase A(2) (sPLA(2)) family has been generally thought to participate in pathologic events such as inflammation and atherosclerosis, relatively high and constitutive expression of group X sPLA(2) (sPLA(2)-X) in restricted sites such as reproductive organs, the gastrointestinal tract, and peripheral neurons raises a question as to the roles played by this enzyme in the physiology of reproduction, digestion, and the nervous system. Herein we used mice with gene disruption or transgenic overexpression of sPLA(2)-X to clarify the homeostatic functions of this enzyme at these locations. Our results suggest that sPLA(2)-X regulates 1) the fertility of spermatozoa, not oocytes, beyond the step of flagellar motility, 2) gastrointestinal phospholipid digestion, perturbation of which is eventually linked to delayed onset of a lean phenotype with reduced adiposity, decreased plasma leptin, and improved muscle insulin tolerance, and 3) neuritogenesis of dorsal root ganglia and the duration of peripheral pain nociception.

View Article and Find Full Text PDF

Background: Group X secretory phospholipase A(2) (sPLA(2)-X) has the most potent hydrolyzing activity toward phosphatidylcholine and elicits a marked release of arachidonic acid among several types of sPLA(2). sPLA(2)-X is expressed in neutrophils, but its pathogenic role remains unclear.

Methods And Results: We generated mice that lack sPLA(2)-X and studied their response to myocardial ischemia/reperfusion.

View Article and Find Full Text PDF

Background: We have already reported Gas6 is involved in glomerular hypertrophy observed in diabetic nephropathy. However, the molecular mechanisms involved in glomerular hypertrophy are still unknown, especially in vivo.

Methods: In vivo, diabetes was induced in rats and mice by streptozotocin (STZ) and the activation of the Akt/mTOR pathway in glomeruli was examined.

View Article and Find Full Text PDF

Group X secretory phospholipase A2 (sPLA2-X) and cytosolic phospholipase A2 alpha (cPLA2alpha) are involved in the release of arachidonic acid (AA) from membrane phospholipids linked to the eicosanoid production in various pathological states. Recent studies have indicated the presence of various types of cross-talk between sPLA2s and cPLA2alpha resulting in effective AA release. Here we examined the dependence of sPLA2-X-induced potent AA release on the cPLA2alpha activation by using specific cPLA2alpha or sPLA2 inhibitors as well as cPLA2alpha-deficient mice.

View Article and Find Full Text PDF

The quantitative or qualitative decline of high-density lipoprotein (HDL) is linked to the pathogenesis of atherosclerosis because of its antiatherogenic functions, including the mediation of reverse cholesterol transport from the peripheral cells to the liver. We have recently shown that group X secretory phospholipase A(2) (sPLA(2)-X) is involved in the pathogenesis of atherosclerosis via potent lipolysis of low-density lipoprotein (LDL) leading to macrophage foam cell formation. We demonstrate here that sPLA(2)-X as well as group V secretory PLA(2) (sPLA(2)-V), another group of sPLA(2) that can potently hydrolyze phosphatidylcholine (PC), also possess potent hydrolytic potency for PC in HDL linked to the production of a large amount of unsaturated fatty acids and lysophosphatidylcholine (lysoPC).

View Article and Find Full Text PDF

Growth-arrest specific gene 6 (Gas6) is a vitamin K-dependent growth factor for mesangial and epithelial cells. To investigate whether Gas6 is essential for progressive glomerular injury, we constructed Gas6(-/-) mice and examined the role of Gas6 in accelerated nephrotoxic nephritis (NTN), a model of progressive glomerulonephritis. We found less mortality and proteinuria in Gas6(-/-) mice than in wild-type mice following injection of nephrotoxic serum.

View Article and Find Full Text PDF

The deposition of cholesterol ester within foam cells of the artery wall is fundamental to the pathogenesis of atherosclerosis. Modifications of low density lipoprotein (LDL), such as oxidation, are prerequisite events for the formation of foam cells. We demonstrate here that group X secretory phospholipase A2 (sPLA2-X) may be involved in this process.

View Article and Find Full Text PDF