LPS stimulates the TLR4/Myeloid differentiation protein-2 (MD-2) complex and promotes a variety of immune responses in B cells. TLR4 has two main signaling pathways, MyD88 and Toll/IL-1R (TIR)-domain-containing adaptor-inducing interferon-β (TRIF) pathways, but relatively few studies have examined these pathways in B cells. In this study, we investigated MyD88- or TRIF-dependent LPS responses in B cells by utilizing their knockout mice.
View Article and Find Full Text PDFInflammasome activation initiates the development of many inflammatory diseases, including obesity and type 2 diabetes. Therefore, agents that target discrete activation steps could represent very important drugs. We reported previously that ILG, a chalcone from Glycyrrhiza uralensis, inhibits LPS-induced NF-κB activation.
View Article and Find Full Text PDFMarginal zone (MZ) B cells mount rapid T-cell-independent (T-I) immune responses against microbial components such as LPS. While Toll-like receptor 4 (TLR4) is essential for LPS responses, MZ B cells uniquely express high levels of another LPS sensor Radioprotective 105 (RP105). However, little is known about how RP105 is used by MZ B cells.
View Article and Find Full Text PDFMD-1 is a secreted protein that forms a complex with radioprotective 105 (RP105) and this complex plays a crucial role in lipopolysaccharide (LPS) recognition by B cells. Disease progression is known to improve in RP105-deficient lupus-prone MRL(lpr/lpr) mice. Furthermore, a soluble form of the homologous MD-2 protein is present in the plasma of septic patients and can opsonize gram-negative bacteria in cooperation with Toll-like receptor (TLR) 4.
View Article and Find Full Text PDF