Publications by authors named "Yoshikage Muroi"

Epilepsy is a chronic neurological disorder characterized by recurrent seizures that affects over 70 million people worldwide. Although many antiepileptic drugs that block seizures are available, they have little effect on preventing and curing epilepsy, and their side effects sometimes lead to serious morbidity. Therefore, prophylactic agents with anticonvulsant properties and no adverse effects need to be identified.

View Article and Find Full Text PDF

The prevalence of depression in women increases during the postpartum period. We previously reported that subchronic exposure to social stress decreased passive coping in postpartum female mice. This study aimed to investigate whether noradrenaline regulation might regulate coping styles in mice.

View Article and Find Full Text PDF
Article Synopsis
  • * The browning process involves the activation of uncoupling proteins through pathways like the β3 adrenergic receptor and transcription factors like PPARγ, which are key in determining fat cell fate and may help combat conditions like obesity and diabetes.
  • * Research utilizing pigs as animal models shows that stimulation with isoproterenol can trigger browning effects in pig white adipocytes, indicating that understanding these mechanisms may lead to improved treatments for metabolic disorders in humans.
View Article and Find Full Text PDF

Stress-coping strategies have been implicated in depression. The control of stress coping may improve the symptom and higher prevalence of depression during the postpartum period in women. However, the neuronal mechanisms underlying stress coping remain to be fully elucidated in postpartum women.

View Article and Find Full Text PDF

Glutamatergic signals in the dorsal raphe nucleus (DRN) regulate maternal aggression and care in mice. We examined whether glutamatergic input from the medial prefrontal cortex (mPFC) to the DRN might regulate maternal aggression and care in mice. In the maternal aggression test, each dam was exposed to an identical intruder male twice for 5 min, 60 min apart.

View Article and Find Full Text PDF

We previously reported that the dorsal raphe nucleus (DRN) was involved in the regulation of maternal care in lactating female mice. The DRN receives multiple innervations from a variety of the brain regions. Corticotropin-releasing factor (CRF) Type 1 and Type 2 receptors are distributed in the DRN.

View Article and Find Full Text PDF

Maternal care and aggression are representative of maternal behavior among lactating female mice. Even neonates and juveniles, who are not biological offspring, can induce maternal care and aggression in dams. Here, we investigated the factors that induce maternal aggression through exposure to juvenile mice.

View Article and Find Full Text PDF

Lactation is indispensable for the pup's survival, but is considered a survival burden in dams under negative energy conditions. In the present study, we tested our hypothesis that oxytocin may facilitate energy investment to pups through behavioral control as well as milk ejection. Maternal care was observed in dams at 3 h but not 8 h after food deprivation.

View Article and Find Full Text PDF

The cerebellar lesions of bovine spongiform encephalopathy (BSE)-infected guinea pigs were characterized as severe atrophy of the cerebellar cortex associated with the loss of granule cells, decrease in the width of the molecular layer, and intense protease-resistant prion protein (PrP ) accumulations that are similar to cerebellar lesions in kuru and the VV2 type of sporadic Creutzfeldt-Jakob disease. The aim of this study is to assess the relationships between the distribution and localization of PrP and synapses expressing neurotransmitter transporters in order to reveal the pathogenesis of the disease. We used cell-type-specific immunohistochemical makers recognizing glutamatergic and γ-aminobutylic acid (GABA)ergic terminals to identify terminals impaired with PrP accumulations.

View Article and Find Full Text PDF

Previously, we found that 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) model mice (PD mice) showed facilitation of hippocampal memory extinction via reduced cyclic adenosine monophosphate (cAMP)/cAMP-dependent response element-binding protein (CREB) signaling, which may cause cognitive impairment in PD. Serotonergic neurons in the median raphe nucleus (MnRN) project to the hippocampus, and functional abnormalities have been reported. In the present study, we investigated the effects of the serotonin 5-HT receptor (5-HTR) agonists prucalopride and velusetrag on the facilitation of memory extinction observed in PD mice.

View Article and Find Full Text PDF

Lactating female mice nurture their pups and attack intruders in their territory. When an intruder invades a dam's territory, she needs to switch her behavior from care to aggression to protect her pups and territory. Although the neuronal mechanisms underlying each distinct behavior have been studied, it is unclear how these behaviors are displayed alternatively.

View Article and Find Full Text PDF

Odors in female mice induce sexual arousal in male mice. Repeated exposure to female odors attenuates male attraction, which recovers when the odors are removed. The neuronal mechanisms for the recovery of male attraction have not been clarified.

View Article and Find Full Text PDF

Cognitive impairment often occurs in Parkinson's disease (PD), but the mechanism of onset remains unknown. Recently, we reported that PD model mice produced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) show facilitation of hippocampal memory extinction, which may be the cause of cognitive impairment in PD. When we examined the cAMP/CREB signaling in the hippocampus, decreased levels of cAMP and phosphorylated CREB were observed in the dentate gyrus (DG) of MPTP-treated mice.

View Article and Find Full Text PDF

Animals consume energy for reproduction, as well as survival. Excess or insufficient energy investment into reproduction, respectively, threatens the survival of parents or leads to the failure of reproduction. Management of energy consumption in reproduction is important, not only for the success of the process, but also for the survival of the parents.

View Article and Find Full Text PDF

Aims: Bilateral lesions of the mesencephalic trigeminal sensory nucleus (Me5), which receives histaminergic neurons from the tuberomammillary nucleus (TMN), alter nocturnal feeding and related behaviors in mice, concomitant with a decrease in orexin mRNA level in the perifornical area (PFA) during the dark phase. Therefore, we investigated the neuronal input to the TMN from the Me5, as well as the effects of TMN lesions on the circadian profiles of feeding and related behaviors.

Main Methods: We examined the presence of neurons projecting from the Me5 to the TMN by direct injection of a retrograde tracer, Fluorogold, into the TMN E2 sub-region (TMN-E2).

View Article and Find Full Text PDF

Chronic infection with Toxoplasma gondii becomes established in tissues of the central nervous system, where parasites may directly or indirectly modulate neuronal function. Epidemiological studies have revealed that chronic infection in humans is a risk factor for developing mental diseases. However, the mechanisms underlying parasite-induced neuronal dysfunction in the brain remain unclear.

View Article and Find Full Text PDF

Neospora caninum is an obligate intracellular parasite that causes neurological disorders in dogs and cattle. The majority of host animals are asymptomatic at the chronic stage of infection. However, it remains unclear whether cerebral function is normal in asymptomatic animals.

View Article and Find Full Text PDF

Drinking behavior is regulated by endogenous factors such as the hydration condition of animals and exogenous factors such as the taste of ingested fluids. These factors have been suggested to interact with each other via serotonergic (5-HT) signaling to regulate drinking behavior. In the present study, we examined how dehydration affects the intake of bitter water, which suppresses drinking behavior, via 5-HT signaling.

View Article and Find Full Text PDF

Lysophospholipids are important signaling molecules in animals and metazoan cells. They are widely distributed among marine invertebrates, where their physiological roles are unknown. Sea cucumbers produce unique lysophospholipids.

View Article and Find Full Text PDF

Aims: Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive loss of dopaminergic (DAergic) neurons in the substantia nigra pars compacta (SNpc). In PD, thinking and retrieval deficits often arise from cognitive impairments. However, the mechanism of cognitive disorders in PD remains unknown.

View Article and Find Full Text PDF

Maternal care is indispensable for the survival of mammalian offspring. Although virgin female mice avoid pups, they actively display maternal behavior after parturition. To determine which brain regions are involved in the qualitative differences observed in the responses of virgin and lactating females to pups, we compared the expression of c-Fos, which is a marker of neuronal activation, in brain regions involved in regulating maternal behavior.

View Article and Find Full Text PDF

Neospora caninum is a protozoan parasite that causes neurological disorders in dogs and cattle. It can cause nonsuppurative meningoencephalitis and a variety of neuronal symptoms are observed, particularly in dogs. However, the pathogenic mechanism, including the relationship between the parasite distribution and the clinical signs, is unclear.

View Article and Find Full Text PDF

Lactation is indispensable for the survival of mammalian pups. However, any excess of energy expenditure for lactation over energy intake threatens the mother's survival. Here, we report that an orexigenic molecule, neuropeptide Y (NPY), mediates nutritional state-dependent regulation of maternal behavior.

View Article and Find Full Text PDF

Aims: In the present study, we found that saccharin, an artificial calorie-free sweetener, promotes neurite extension in the cultured neuronal cells. The purposes of this study are to characterize the effect of saccharine on neurite extension and to determine how saccharin enhances neurite extension.

Main Methods: The analyses were performed using mouse neuroblastoma N1E-115 cells and rat pheochromocytoma PC12 cells.

View Article and Find Full Text PDF

Aims: The mesencephalic trigeminal sensory nucleus (Me5), which receives signals originating from oral proprioceptors and projects its fibers to the hypothalamus, regulates mastication and modulates satiation. Because the Me5 neurons display circadian rhythms in circadian mPer1 gene expression and bilateral Me5 lesions change feeding and exploratory behavior profiles, we speculated that Me5 may influence the daily timing of feeding. Therefore, we explored the effects of bilateral caudal Me5 lesions on the circadian profiles of feeding and its related behaviors.

View Article and Find Full Text PDF