Magnetoencephalography (MEG) provides crucial information in diagnosing focal epilepsy. However, dipole estimation, a commonly used analysis method for MEG, can be time-consuming since it necessitates neurophysiologists to manually identify epileptic spikes. To reduce this burden, we developed the automatic detection of spikes using deep learning in single center.
View Article and Find Full Text PDFIntroduction: Aesthetic emotions are a class of emotions aroused by evaluating aesthetically appealing objects or events. While evolutionary aesthetics suggests the adaptive roles of these emotions, empirical assessments are lacking. Previous neuroscientific studies have demonstrated that visual stimuli carrying evolutionarily important information induce neural responses even when presented non-consciously.
View Article and Find Full Text PDFObjective: The severity of menopausal symptoms, despite being triggered by hormonal imbalance, does not directly correspond to hormone levels in the blood; thus, the level of unpleasantness is assessed using subjective questionnaires in clinical practice. To provide better treatments, alternative objective assessments have been anticipated to support medical interviews and subjective assessments. This study aimed to develop a new objective measurement for assessing unpleasantness.
View Article and Find Full Text PDFBackground: Dementia and mild cognitive impairment are characterised by symptoms of cognitive decline, which are typically assessed using neuropsychological assessments (NPAs), such as the Mini-Mental State Examination (MMSE) and Frontal Assessment Battery (FAB). Magnetoencephalography (MEG) is a novel clinical assessment technique that measures brain activities (summarised as oscillatory parameters), which are associated with symptoms of cognitive impairment. However, the relevance of MEG and regional cerebral blood flow (rCBF) data obtained using single-photon emission computed tomography (SPECT) has not been examined using clinical datasets.
View Article and Find Full Text PDFBackground Cognition is a vital sign and its deterioration is a major concern in clinical medicine. It is usually evaluated using neuropsychological assessments, which have innate limitations such as the practice effect. To compensate for these assessments, the oscillatory power of resting-state brain activity has recently become available.
View Article and Find Full Text PDFPurpose: Epilepsy is a prevalent neurological disorder characterised by repetitive seizures. It is categorised into three types: generalised epilepsy (GE), focal epilepsy (FE), and combined generalised and focal epilepsy. Correctly subtyping the epilepsy is important to select appropriate treatments.
View Article and Find Full Text PDFKey Clinical Message: Cognitive impairment associated dementia is treatable non-pharmacologically. Monitoring tools are important to provide proper treatment. The present study showed that the resting-state brain activity measured using magnetoencephalography reflects their outcomes and captures clinical impressions better than neuropsychological assessments, which have inherent limitations such as the practice effect.
View Article and Find Full Text PDFCognitive impairment is a major concern in clinical medicine. It is usually evaluated with neuropsychological assessments, which have inherent limitations. To compensate for them, magnetoencephalography has already come into clinical use to evaluate the level of cognitive impairment.
View Article and Find Full Text PDFThe majority of electroencephalographic (EEG) and magnetoencephalographic (MEG) studies filter and analyse neural signals in specific frequency ranges, known as "canonical" frequency bands. However, this segmentation, is not exempt from limitations, mainly due to the lack of adaptation to the neural idiosyncrasies of each individual. In this study, we introduce a new data-driven method to automatically identify frequency ranges based on the topological similarity of the frequency-dependent functional neural network.
View Article and Find Full Text PDFBrain connectivity networks are usually characterized in terms of properties coming from the complex network theory. Using new measures to summarize the attributes of functional connectivity networks can be an important step for their better understanding and characterization, as well as to comprehend the alterations associated with neuropsychiatric and neurodegenerative disorders. In this context, the main objective of this study was to introduce a novel methodology to evaluate network robustness, which was subsequently applied to characterize the brain activity in the Alzheimer's disease (AD) continuum.
View Article and Find Full Text PDFAcupuncture analgesia is a traditional treatment with a long history, although it lacks scientific evidence. It is reportedly associated with the central nervous system, including various brain regions, from the cortices to the brain stem. However, it remains unclear whether the distributed regions behave as a single unit or consist of multiple sub-units playing different roles.
View Article and Find Full Text PDFDementia is a syndrome characterised by cognitive impairments, with a loss of learning/memory abilities at the earlier stages and executive dysfunction at the later stages. However, recent studies have suggested that impairments in both learning/memory abilities and executive functioning might co-exist. Cognitive impairments have been primarily evaluated using neuropsychological assessments, such as the Mini-Mental State Examination (MMSE).
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2021
Connectivity analyses are widely used to assess the interaction brain networks. This type of analyses is usually conducted considering the well-known classical frequency bands: delta, theta, alpha, beta, and gamma. However, this parcellation of the frequency content can bias the analyses, since it does not consider the between-subject variability or the particular idiosyncrasies of the connectivity patterns that occur within a band.
View Article and Find Full Text PDFThe main objective of this study was to examine the influence that recording length, sampling frequency, and imaging modality have on the estimation and characterization of spontaneous brain meta-states during rest. To this end, a recently developed method of meta-state extraction and characterization was applied to a subset of 16 healthy elderly subjects from two independent electroencephalographic and magnetoencephalographic (EEG/MEG) databases. The recordings were segmented into the first 5, 10, 15, 20, 25, 30, 60 and 90-s of artifact-free activity and meta-states were extracted.
View Article and Find Full Text PDFDementia due to Alzheimer's disease (AD) is a neurological syndrome which has an increasing impact on society, provoking behavioral, cognitive, and functional impairments. AD lacks an effective pharmacological intervention; thereby, non-pharmacological treatments (NPTs) play an important role, as they have been proven to ameliorate AD symptoms. Nevertheless, results associated with NPTs are patient-dependent, and new tools are needed to predict their outcome and to improve their effectiveness.
View Article and Find Full Text PDFResting-state neural oscillations are used as biomarkers for functional diseases such as dementia, epilepsy, and stroke. However, accurate interpretation of clinical outcomes requires the identification and minimisation of potential confounding factors. While several studies have indicated that the menstrual cycle also alters brain activity, most of these studies were based on visual inspection rather than objective quantitative measures.
View Article and Find Full Text PDFCerebral hypoperfusion impairs brain activity and leads to cognitive impairment. Left and right common carotid arteries (CCA) are the major source of cerebral blood supply. It remains unclear whether blood flow in both CCA contributes equally to brain activity.
View Article and Find Full Text PDFAppropriate determination of the epileptic focus and its laterality are important for the diagnosis of mesial temporal lobe epilepsy (MTLE). The aims of this study are to establish a specific oscillatory distribution and laterality of the oscillatory power in unilateral MTLE with frequency analysis of magnetoencephalography (MEG), and to confirm their potential to carry significant information for determining lateralization of the epileptic focus. Thirty-five patients with MTLE [left (LtMTLE), 16; right (RtMTLE), 19] and 102 healthy control volunteers (CTR) were enrolled.
View Article and Find Full Text PDFDementia is a progressive cognitive syndrome, with few effective pharmacological treatments that can slow its progress. Hence, non-pharmacological treatments (NPTs) play an important role in improving patient symptoms and quality of life. Designing the optimal personalised NPT strategy relies on objectively and quantitatively predicting the treatment outcome.
View Article and Find Full Text PDFAging and gender influence regional brain activities. Although these biases should be considered during the clinical examinations using magnetoencephalography, they have yet to be standardized. In the present study, resting-state magnetoencephalography data were recorded from 54 healthy females and 48 males aged 22 to 75 years, who were controlled for cognitive performance.
View Article and Find Full Text PDFIntroduction: Pain has been identified as a risk factor for cognitive dysfunction, which in turn affects pain perception. Although pain, cognitive dysfunction, and their interaction are clinically important, the neural mechanism connecting the two phenomena remains unclear.
Methods: The resting-state brain activity of 38 participants was measured using magnetoencephalography before and after the patients underwent selective nerve root block (SNRB) for the treatment of their pain.
Traditional magnetoencephalographic (MEG) brain imaging scanners consist of a rigid sensor array surrounding the head; this means that they are maximally sensitive to superficial brain structures. New technology based on optical pumping means that we can now consider more flexible and creative sensor placement. Here we explored the magnetic fields generated by a model of the human hippocampus not only across scalp but also at the roof of the mouth.
View Article and Find Full Text PDFObjective: Although magnetoencephalography and electroencephalography (M/EEG) signals at sensor level are robust and reliable, they suffer from different degrees of distortion due to changes in brain tissue conductivities, known as field spread and volume conduction effects. To estimate original neural generators from M/EEG activity acquired at sensor level, diverse source localisation algorithms have been proposed; however, they are not exempt from limitations and usually involve time-consuming procedures. Connectivity and network-based M/EEG analyses have been found to be affected by field spread and volume conduction effects; nevertheless, the influence of the aforementioned effects on widely used local activation parameters has not been assessed yet.
View Article and Find Full Text PDF