Publications by authors named "Yoshihiro Katsube"

Patients with severe hypophosphatasia (HPP) develop osteogenic impairment with extremely low alkaline phosphatase (ALP) activity, resulting in a fatal course during infancy. Mesenchymal stem cells (MSCs) differentiate into various mesenchymal lineages, including bone and cartilage. The efficacy of allogeneic hematopoietic stem cell transplantation for congenital skeletal and storage disorders is limited, and therefore we focused on MSCs for the treatment of HPP.

View Article and Find Full Text PDF
Article Synopsis
  • Bone marrow transplantation (BMT) is used to treat congenital metabolic diseases, but there is a risk of developing leukemia from intensive treatment.
  • A case study details an 8-month-old girl with hypophosphatasia who received haploidentical BMT and multiple mesenchymal stem cell (MSC) transplants from her father, resulting in therapy-related leukemia by age 32 months.
  • Despite this complication, a second round of BMT and MSC transplants at 40 months led to the girl's complete recovery, highlighting the complexities of treatment and potential risks associated with cytotoxic agents.
View Article and Find Full Text PDF

Various mesenchymal stromal cells (MSCs) have been applied to regenerative medicine. MSCs derived from periodontal tissue could also be a useful cell source for alveolar bone regeneration. However, only a few attempts of direct comparisons have been made between MSCs from periodontal tissues and those from other somatic tissues.

View Article and Find Full Text PDF

Bone marrow-derived mesenchymal stem cells (BMSCs) and adipose tissue-derived mesenchymal stem cells (AMSCs) have been used clinically for tissue regeneration; however, their proliferation/differentiation potentials are limited. Recently, induced pluripotent stem cells (iPSCs), known to have nearly unlimited potential to proliferate and differentiate into cells of all three germ layers, have gained wide interest in regenerative medicine. Here, we generated iPSCs from frozen-stocked AMSCs and BMSCs and examined their biological characteristics by comparative analyses.

View Article and Find Full Text PDF

The expression of four transcription factors (OCT3/4, SOX2, KLF4, and MYC) can reprogram mouse as well as human somatic cells to induced pluripotent stem (iPS) cells. We generated iPS cells from mesenchymal stromal cells (MSCs) derived from human third molars (wisdom teeth) by retroviral transduction of OCT3/4, SOX2, and KLF4 without MYC, which is considered as oncogene. Interestingly, some of the clonally expanded MSCs could be used for iPS cell generation with 30-100-fold higher efficiency when compared with that of other clonally expanded MSCs and human dermal fibroblasts.

View Article and Find Full Text PDF

Marrow mesenchymal stem cells (MSCs) are multipotent progenitor cells and reported to be immunoprivileged as well as immunosuppressive. Hence, MSCs might be ideal candidates for allogeneic transplantation to induce regeneration of damaged tissues/organs. To confirm the differentiation capability of allogeneic MSCs in vivo is important for the acceleration of regenerative medicine.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) reside in many types of tissue and are able to differentiate into various functional cells including osteoblasts. Recently, adipose tissue-derived MSCs (AMSCs) have been shown to differentiate into many lineages, and they are considered a source for tissue regeneration. The purpose of this study was to compare the osteogenic differentiation capability of MSCs from bone marrow (BMSCs), MSCs from periosteum (PMSCs), and AMSCs using in vitro culture and in vivo implantation experiments.

View Article and Find Full Text PDF

A cell's shape is known to be related to its proliferative activity. In particular, large and flat mammalian adult stem cells seem to show slow proliferation, however using quantitative analysis to prove the phenomenon is difficult. We measured the proliferation and cellular thickness of human mesenchymal stem cells (MSCs) by atomic force microscopy and found that MSCs with high proliferative activity were thick while those with low proliferative activity were thin, even though these MSCs were early passage cells.

View Article and Find Full Text PDF

Adult stem cells have been reported to exist in various tissues. The isolation of high-quality human stem cells that can be used for regeneration of fatal deseases from accessible resources is an important advance in stem cell research. In the present study, we identified a novel stem cell, which we named tooth germ progenitor cells (TGPCs), from discarded third molar, commonly called as wisdom teeth.

View Article and Find Full Text PDF

We have previously shown that the common progenitors for myeloid, T, and B cell lineages are enriched in the earliest population of murine fetal liver. However, it remained unclear whether such multipotent progenitors represent the pluripotent progenitors capable of generating all hemopoietic cells or they also comprise progenitors restricted to myeloid, T, and B cell lineages. To address this issue, we have developed a new clonal assay covering myeloid, erythroid, T, and B cell lineages, and using this assay the developmental potential of individual cells in subpopulations of lineage marker-negative (Lin(-)) c-kit(+) murine fetal liver cells was investigated.

View Article and Find Full Text PDF