Publications by authors named "Yoshihiko Susuki"

The Koopman operator framework holds promise for spectral analysis of nonlinear dynamical systems based on linear operators. Eigenvalues and eigenfunctions of the Koopman operator, the so-called Koopman eigenvalues and Koopman eigenfunctions, respectively, mirror global properties of the system's flow. In this paper, we perform the Koopman analysis of the singularly perturbed van der Pol system.

View Article and Find Full Text PDF

We study the scale dependence of effective diffusion of fluid tracers, specifically, its dependence on the Péclet number, a dimensionless parameter of the ratio between advection and molecular diffusion. Here, we address the case that length and time scales on which the effective diffusion can be described are not separated from those of advection and molecular diffusion. For this, we propose an alternate method for characterizing the effective diffusivity without relying on the scale separation.

View Article and Find Full Text PDF

Koopman mode decomposition (KMD) is a technique of nonlinear time-series analysis capable of decomposing data on complex spatiotemporal dynamics into multiple modes oscillating with single frequencies, called the Koopman modes (KMs). We apply KMD to measurement data on oscillatory dynamics of a temperature field inside a room that is a complex phenomenon ubiquitous in our daily lives and has a clear technological motivation in energy-efficient air conditioning. To characterize not only the oscillatory field (scalar field) but also associated heat flux (vector field), we introduce the notion of a temperature gradient using the spatial gradient of a KM.

View Article and Find Full Text PDF

This paper analyzes frequency entrainment described by van der Pol and phase-locked loop (PLL) equations. The PLL equation represents the dynamics of a PLL circuit that appear in typical phase-locking phenomena. These two equations describe frequency entrainment by a periodic force.

View Article and Find Full Text PDF