Publications by authors named "Yoshihiko Matsui"

Activated carbon adsorption is an effective method for removing perfluoroalkyl substances (PFAS) from water. However, the observation that higher concentrations of PFAS are observed after treatment than before (i.e.

View Article and Find Full Text PDF

Granular or powdered activated carbon (GAC/PAC) processes are installed in full-scale drinking water treatment plants (DWTPs) to reduce disinfection byproduct precursors, odor, ammonia, and pesticides. This study investigated the ability of GAC/PAC processes in 23 DWTPs to remove per- and polyfluoroalkyl substances (PFASs). In the GAC process, filter breakthrough of perfluoroalkyl carboxylic acids (PFCAs) occurred faster as the PFCA chain length is decreased.

View Article and Find Full Text PDF

Application of poly-aluminum chloride (PACl) coagulant is a popular mode of water treatment worldwide because of the high capacity of PACl to neutralize charge. The manufacture and use of PACls with various basicities in different regions around the world suggest that the characteristics of the raw water are important determinants of the efficacy of PACl application. However, attention has not been fully paid to the effects of water quality other than the substances to be removed.

View Article and Find Full Text PDF

Proper selection of new contaminants to be regulated or monitored prior to implementation is an important issue for regulators and water supply utilities. Herein, we constructed and evaluated machine learning models for predicting the detectability (detection/non-detection) of pesticides in surface water as drinking water sources. Classification and regression models were constructed for Random Forest, XGBoost, and LightGBM, respectively; of these, the LightGBM classification model had the highest prediction accuracy.

View Article and Find Full Text PDF

Catalytic oxidative removal of Mn on activated-carbon surfaces by free chlorine was recently discovered and found to be potentially practicable for water treatment when using micrometer-sized activated carbon. Herein, we newly derived a kinetic model for trace-substance removal by catalytic reaction and applied it to the Mn removal. External-film mass transfer, adsorption, and oxidation/desorption contributed similarly to the Mn removal rate under actual practical conditions.

View Article and Find Full Text PDF

Submerged-membrane hybrid systems (SMHSs) that combine membrane filtration with powdered activated carbon (PAC) take advantage of PAC's ability to adsorb and remove contaminants dissolved in water. However, the risk of contaminant desorption due to temporal changes in the influent concentration of the contaminant has not been thoroughly explored. In this study, we used a SMHS with conventionally-sized PAC or superfine PAC (SPAC) to remove 2-methylisoborneol (MIB), a representative micropollutant, from water containing natural organic matter (NOM), with the goal of elucidating adsorption-desorption phenomena in the SMHS.

View Article and Find Full Text PDF

The discharged state affects the charge transfer resistance of lithium-ion secondary batteries (LIBs), which is referred to as the depth of discharge (DOD). To understand the intrinsic charge/discharge property of LIBs, the DOD-dependent charge transfer resistance at the solid-liquid interface is required. However, in a general composite electrode, the conductive additive and organic polymeric binder are unevenly distributed, resulting in a complicated electron conduction/ion conduction path.

View Article and Find Full Text PDF

One of the main purposes of drinking water treatment is to reduce turbidity originating from clay particles. Relatively little is known about the removal of other types of particles, including conventionally sized powdered activated carbon (PAC) and superfine PAC (SPAC), which are intentionally added during the treatment process; microplastic particles; and viruses. To address this knowledge gap, we conducted a preliminary investigation in full-scale water treatment plants and then studied the removal of these particles during coagulation-flocculation, sedimentation, and rapid sand filtration (CSF) in bench-scale experiments in which these particles were present together.

View Article and Find Full Text PDF

Drinking water quality guideline values for toxic compounds are determined based on their acceptable daily intake. The toxicological end point for determining the acceptable daily intake of most organophosphorus insecticides is inhibition of acetylcholinesterase (AChE). Although insecticides ingested with drinking water are partly metabolized by the liver before transport to the rest of the body, no current cell-independent AChE activity assay takes the effects of metabolism into account.

View Article and Find Full Text PDF

1,4-Dioxane is one of the most persistent organic micropollutants in conventional drinking-water-treatment processes. Vacuum ultraviolet (VUV) treatment is a promising means of removing micropollutants such as 1,4-dioxane from source water, but this approach has not yet been implemented in a full-scale water treatment plant, partly because the operating parameters for pilot and full-scale VUV photoreactors have not been optimized. Here, we developed a computational fluid dynamics-based method for optimizing VUV photoreactor performance through energy-based analyses that take into account the effects of two important operating parameters-flow rate and radiant exitance.

View Article and Find Full Text PDF

The elution of lead, and nickel from water supply devices into water is a potential health concern. This study was performed to examine the actual concentrations of nickel and lead in the water from taps in homes and offices, focusing on the differences between first flush and fully flushed water. The water quality management target value and water quality standard in Japan specify nickel and lead concentrations in drinking water <20 and <10 μg/L, respectively.

View Article and Find Full Text PDF

Although superfine powdered activated carbon has excellent adsorption properties, it is not used in conventional water treatment processes comprising coagulation-flocculation, sedimentation, and sand filtration (CSF) due to concerns about its residual in treated water. Here, we examined the production and fate of very fine carbon particles with lacking in charge neutralization as a source of the residual in sand filtrate after CSF treatment. Almost all of the carbon particles in the water were charge-neutralized by coagulation treatment with rapid mixing, but a very small amount (≤0.

View Article and Find Full Text PDF

Here, we examined the removal of soluble divalent manganese (Mn(II)) by combination treatment with superfine powdered activated carbon (SPAC) and free chlorine in a membrane filtration pilot plant and batch experiments. Removal rates >95% were obtained with 3 mg/L SPAC, 1 mg/L chlorine, and a contact time of 4 min, meeting practical performance standards. Mn(II) was found to be oxidized and precipitated on the surface of the activated carbon particles by chlorine.

View Article and Find Full Text PDF

Several risk scoring and ranking methods have been applied for the prioritization of micropollutants, including pesticides, and in the selection of pesticides to be regulated regionally and nationally. However, the effectiveness of these methods has not been evaluated in Japan. We developed a risk prediction method to select pesticides that have a high probability of being detected in drinking water sources where no monitoring data is available.

View Article and Find Full Text PDF

Vacuum ultraviolet (VUV) treatment is a promising advanced oxidation process for the removal of organic contaminants during water treatment. Here, we investigated the formation of disinfection by-products from coexisting organic matter during VUV or ultraviolet (UV) treatment following pre-chlorination, and their fates after post-chlorination, in a standard Suwannee River humic acid water and a natural lake water. VUV treatment after pre-chlorination decreased the total trihalomethane (THM) concentration but increased total aldehyde and chloral hydrate concentrations; total haloacetic acid (HAA) and haloacetonitrile (HAN) concentrations did not change.

View Article and Find Full Text PDF

Organophosphorus insecticides are known to be partly transformed to their respective oxons during the chlorination step of drinking water treatment. For most organophosphorus insecticides, the toxicological endpoint for determining acceptable daily intake levels is inhibition of acetylcholinesterase (AChE). Like the parent insecticides, oxons also inhibit AChE, so the presence of oxons in drinking water is also evaluated.

View Article and Find Full Text PDF

Although agricultural activities-especially paddy rice cultivation-are prominent in watersheds in Asian countries, few comprehensive studies have examined pesticide concentrations in water in these areas. Here, we report the concentrations of 162 pesticides in treated drinking water and source water (14,076 samples) in Japan, where rice cultivation is common, along with trends in sales of herbicides, fungicides, and insecticides from 1963 to 2016. Herbicides and fungicides-especially those used in rice farming were frequently detected in drinking water sources.

View Article and Find Full Text PDF

Many PACl (poly-aluminum chloride) coagulants with different characteristics have been trial-produced in laboratories and commercially produced, but the selection of a proper PACl still requires empirical information and field testing. Even PACls with the same property sometimes show different coagulation performances. In this study, we compared PACls produced by AlCl-titration and Al(OH)-dissolution on their performance during coagulation-flocculation, sedimentation, and sand filtration (CSF) processes.

View Article and Find Full Text PDF

Three different natural organic matter (NOM)-loading methods were compared for the adsorptive removal of 2-methylisoborneol (MIB) by superfine powdered activated carbon (SPAC) and conventionally-sized powdered activated carbon (PAC). The three NOM-loading methods were: NOM adsorption followed by MIB (MIB adsorption on NOM-preloaded carbon), MIB adsorption followed by NOM (MIB adsorption on NOM post-loaded carbon), and simultaneous NOM and MIB loading (MIB adsorption on NOM-simultaneously loaded carbon). MIB removals were similar for the smaller-sized carbon (SPAC) at higher AC dosages and at lower initial NOM concentrations.

View Article and Find Full Text PDF

Commercially available powdered activated carbon (PAC) with a median diameter of 12-42 μm was ground into 1 μm sized superfine PAC (SPAC) and 200 nm sized submicron SPAC (SSPAC) and investigated as a pretreatment material for the prevention of hydraulically irreversible membrane fouling during a submerged microfiltration (MF) process. Compared with PAC and SPAC, SSPAC has a high capacity for selective biopolymer adsorption, which is a characteristic found in natural organic matter and is commonly considered to be a major contributor to membrane fouling. Precoating the membrane surface with SSPAC during batch filtration further removes the biopolymers by straining them out.

View Article and Find Full Text PDF

1,4-Dioxane is one of the most persistent organic micropollutants and is quite difficult to remove via conventional drinking water treatment consisting of coagulation, sedimentation, and sand filtration. Vacuum ultraviolet (VUV) treatment has recently been found to show promise as a treatment method for 1,4-dioxane removal, but the associated decomposition rate of 1,4-dioxane is known to be very sensitive to water quality characteristics. Some computational models have been proposed to predict the decomposition rate of micropollutants during VUV treatment, but the effects of only bicarbonate and natural organic matter have been considered in the models.

View Article and Find Full Text PDF

Volatilization volumes and health risks associated with indirect inhalation exposure to formaldehyde evaporated from water have not been investigated quantitatively. We experimentally investigated formaldehyde volatility, compared with chloroform volatility, predicted formaldehyde inhalation exposure concentrations in Japanese bathrooms, and then re-evaluated drinking water quality standards. Although the Henry's law constant of formaldehyde is 1/10 that of chloroform, with a 30-min exposure period, the formaldehyde non-equilibrium partition coefficient (K') was 1/500th the chloroform value because of formaldehyde's faster volatilization rate.

View Article and Find Full Text PDF

Superfine powdered activated carbon (SPAC) of micron to submicron particle size is produced by micro-milling of conventionally sized powdered activated carbon. SPAC has attracted attention because of its high adsorption capacity; however, milling to the submicron particle size range lowers its adsorption capacity. Here, we found that this decrease of adsorption capacity was due to the introduction of oxygen/hydrogen-containing functional groups into the graphene structure of the carbon from water during the milling, causing it to become less hydrophobic.

View Article and Find Full Text PDF