The porous structure, in which many pores are intentionally placed inside the material, has excellent impact energy absorption properties. Recent studies have attempted to fabricate multi-layered porous structures with different mechanical properties within a single porous structure sample, and the mechanical properties of these structures are being elucidated. However, these studies mainly attempted to vary the densities, pore structures, and alloy compositions within a single material, such as aluminum, for the entire sample.
View Article and Find Full Text PDFAluminum foam has relatively low tensile and flexural strengths because it is composed of many pores with thin cell walls. One method of strengthening aluminum foam is to fabricate a composite material with a dense lightweight resin. In this study, the fabrication of composite materials by directly printing resin on an aluminum foam surface using a 3D printer was attempted.
View Article and Find Full Text PDFAluminum foam is a lightweight material and has excellent shock-absorbing properties. Various properties of aluminum foam can be obtained by changing the base aluminum alloy. Multi-layer aluminum foam can be fabricated by varying the alloy type of the base aluminum alloy, but with different foaming temperatures, within a single aluminum foam to achieve multiple properties.
View Article and Find Full Text PDFOwing to its lightweight and excellent shock-absorbing properties, aluminum foam is used in automotive parts and construction materials. If a nondestructive quality assurance method can be established, the application of aluminum foam will be further expanded. In this study, we attempted to estimate the plateau stress of aluminum foam via machine learning (deep learning) using X-ray computed tomography (CT) images of aluminum foam.
View Article and Find Full Text PDFAluminum foam is usually used as the core of composite materials by combining it with dense materials, such as in Al foam core sandwich panels and Al-foam-filled tubes, owing to its low tensile and bending strengths. In this study, all-Al foam-filled tubes consisting of ADC12 Al-Si-Cu die-cast aluminum alloy foam and a dense A1050 commercially pure Al tube with metal bonding were fabricated by friction welding. First, it was found that the ADC12 precursor was firmly bonded throughout the inner wall of the A1050 tube without a gap between the precursor and the tube by friction welding.
View Article and Find Full Text PDFRecently, to further improve the performance of aluminum foam, functionally graded (FG) aluminum foams, whose pore structure varies with their position, have been developed. In this study, three types of FG aluminum foam of aluminum alloy die casting ADC12 with combinations of two different amounts of added blowing agent titanium(II) hydride (TiH₂) powder were fabricated by a friction stir welding (FSW) route precursor foaming method. The combinations of 1.
View Article and Find Full Text PDFAluminum foam has received considerable attention in various fields and is expected to be used as an engineering material owing to its high energy absorption properties and light weight. To improve the mechanical properties of aluminum foam, combining it with dense tubes, such as aluminum foam-filled tubes, was considered necessary. In this study, an aluminum foam-filled steel tube, which consisted of ADC12 aluminum foam and a thin-wall steel tube, was successfully fabricated by friction welding.
View Article and Find Full Text PDFAl foam has been used in a wide range of applications owing to its light weight, high energy absorption and high sound insulation. One of the promising processes for fabricating Al foam involves the use of a foamable precursor. In this study, ADC12 Al foams with porosities of 67%-78% were fabricated from Al alloy die castings without using a blowing agent by the friction stir processing route.
View Article and Find Full Text PDF