The alveoli, critical sites for gas exchange in the lungs, comprise alveolar epithelial cells and pulmonary capillary endothelial cells. Traditional experimental models rely on porous polyethylene terephthalate or polycarbonate membranes, which restrict direct cell-to-cell contact. To address this limitation, we developed AlveoMPU, a new foam-based mortar-like polyurethane-formed alveolar model that facilitates direct cell-cell interactions.
View Article and Find Full Text PDFPlatinum nanocatalysts play critical roles in CO oxidation, an important catalytic conversion process. As the catalyst size decreases, the influence of the support material on catalysis increases which can alter the chemical states of Pt atoms in contact with the support. Herein, we demonstrate that under-coordinated Pt atoms at the edges of the first cluster layer are rendered cationic by direct contact with the AlO support, which affects the overall CO oxidation activity.
View Article and Find Full Text PDFSupported Pt catalysts and ceria are well known for their application in automotive exhaust catalysts. Size-selected Pt clusters supported on a CeO(111) surface exhibit distinct physical and chemical properties. We investigated the morphology of the size-selected Pt (n = 5-13) clusters on a CeO(111) surface using scanning tunneling microscopy at room temperature.
View Article and Find Full Text PDFRelaxation dynamics of hot metal clusters on oxide surfaces play a crucial role in a variety of physical and chemical processes. However, their transient mobility has not been investigated as much as other systems such as atoms and molecules on metal surfaces due to experimental difficulties. To study the role of the transient mobility of clusters on the oxide surface, we investigated the initial adsorption process of size-selected Pt clusters on a thin AlO film.
View Article and Find Full Text PDFWe formed an epitaxial film of CeO2(111) by sublimating Ce atoms on Ru(0001) surface kept at elevated temperature in an oxygen ambient. X-ray photoemission spectroscopy measurement revealed a decrease of Ce(4+)/Ce(3+) ratio in a small temperature window of the growth temperature between 1070 and 1096 K, which corresponds to the reduction of the CeO2(111). Scanning tunneling microscope image showed that a film with a wide terrace and a sharp step edge was obtained when the film was grown at the temperatures close to the reduction temperature, and the terrace width observed on the sample grown at 1060 K was more than twice of that grown at 1040 K.
View Article and Find Full Text PDFSci Technol Adv Mater
December 2014
Catalysis of atomically precise clusters supported on a substrate is reviewed in relation to the type of reactions. The catalytic activity of supported clusters has generally been discussed in terms of electronic structure. Several lines of evidence have indicated that the electronic structure of clusters and the geometry of clusters on a support, including the accompanying cluster-support interaction, are strongly correlated with catalytic activity.
View Article and Find Full Text PDFThe adsorption states of size-selected Ptn clusters (7 ≤ n ≤ 20) soft-landed on an Al2O3/NiAl(110) substrate were investigated using scanning tunneling microscopy, infrared reflection absorption spectroscopy, and temperature programmed desorption. Ptn clusters lay flat on the surface with a planar structure (n ≤ 18), and three-dimensional two-layer clusters start to appear at n ≥ 19. By considering the Pt-Pt and Pt-oxide bonds in the cluster, the morphological transition could be reasonably explained.
View Article and Find Full Text PDFMotivation: Considerable attention has been focused on predicting RNA-RNA interaction since it is a key to identifying possible targets of non-coding small RNAs that regulate gene expression post-transcriptionally. A number of computational studies have so far been devoted to predicting joint secondary structures or binding sites under a specific class of interactions. In general, there is a trade-off between range of interaction type and efficiency of a prediction algorithm, and thus efficient computational methods for predicting comprehensive type of interaction are still awaited.
View Article and Find Full Text PDFSize-selected Pt(n) (n=4,7-10,15) clusters were deposited on TiO(2)(110)-(1x1) surfaces and imaged at atomic resolution using an ultrahigh-vacuum scanning tunneling microscope with a carbon nanotube tip. Clusters smaller than Pt(7) lay flat on the surface with a planar structure and a planar-to-three-dimensional transition occurred at n=8 for Pt(n) clusters on TiO(2). However, both Pt(8) and Pt(9) had two types of geometric structures.
View Article and Find Full Text PDFAbsolute cross sections for NO chemisorption, NO decomposition, and cluster dissociation in the collision of a nitrogen monoxide molecule, NO, with cluster ions Con+ and ConH+ (n=2-5) were measured as a function of the cluster size, n, in a beam-gas geometry in a tandem mass spectrometer. Size dependency of the cross sections and the change of the cross sections by introduction of H to Con+ (effect of H-introduction) are explained by a statistical model based on the RRK theory, with the aid of the energetics obtained by a DFT calculation. It was found that the reactions are governed by the energetics rather than dynamics.
View Article and Find Full Text PDF