Zooplankton monitoring is important for understanding their population dynamics and life history, ecosystem health, and environmental changes. Compared with traditional morphological identification, environmental DNA (eDNA) analysis allows for more sensitive and efficient monitoring of zooplankton diversity. Previous eDNA studies have primarily used metabarcoding approaches to reveal their richness and composition, whereas its performance in predicting zooplankton abundance remains understudied.
View Article and Find Full Text PDFWe examined the effect of ultraviolet (UV) irradiation on the UV spectra and radical scavenging activity of DNA strands and found that the absorption spectra of salmon milt DNA was extended up to about 350 nm after ultraviolet C (UVC, 100-280 nm) irradiation with 300 kJ/m(2). The UV B (UVB, 280-315 nm) protection ability of UVC-irradiated salmon milt DNA for a single-stranded target DNA (19-mer) was further studied. The percentage of damaged target DNA after 50 kJ/m(2) of UVB irradiation in the presence of UVC-irradiated salmon milt DNA, UVC-unirradiated salmon milt DNA, and 2-phenylbenzimidazole sulfonic acid was estimated to be 24.
View Article and Find Full Text PDFHere, we examined the effects of molecular crowding on the function, structure and stability of nucleases. We found that the hydrolysis of a 29-mer double-stranded DNA by the endonucleases DNase I and S1 nuclease was substantially enhanced by molecular crowding using polyethylene glycol (PEG); however, molecular crowding had little effect on hydrolysis by exo III and exo I exonucleases. Moreover, kinetic analysis showed that the maximum velocity for the reaction of DNase I at 25 degrees C was increased from 0.
View Article and Find Full Text PDFLive cells contain high concentrations of macromolecules, but almost all experimental biochemical data have been generated from dilute solutions that do not reflect conditions in vivo. To understand biomolecular behavior in vivo, properties studied in vitro are extrapolated to conditions in vivo; however, the molecular conditions within live cells are inherently crowded. The present study investigates the effect of molecular crowding on DNA polymerase activity using polyethylene glycol PEG of various molecular weights as a crowding agent.
View Article and Find Full Text PDF