Activated carbon adsorption is an effective method for removing perfluoroalkyl substances (PFAS) from water. However, the observation that higher concentrations of PFAS are observed after treatment than before (i.e.
View Article and Find Full Text PDFGranular or powdered activated carbon (GAC/PAC) processes are installed in full-scale drinking water treatment plants (DWTPs) to reduce disinfection byproduct precursors, odor, ammonia, and pesticides. This study investigated the ability of GAC/PAC processes in 23 DWTPs to remove per- and polyfluoroalkyl substances (PFASs). In the GAC process, filter breakthrough of perfluoroalkyl carboxylic acids (PFCAs) occurred faster as the PFCA chain length is decreased.
View Article and Find Full Text PDFOne of the main purposes of drinking water treatment is to reduce turbidity originating from clay particles. Relatively little is known about the removal of other types of particles, including conventionally sized powdered activated carbon (PAC) and superfine PAC (SPAC), which are intentionally added during the treatment process; microplastic particles; and viruses. To address this knowledge gap, we conducted a preliminary investigation in full-scale water treatment plants and then studied the removal of these particles during coagulation-flocculation, sedimentation, and rapid sand filtration (CSF) in bench-scale experiments in which these particles were present together.
View Article and Find Full Text PDFMany PACl (poly-aluminum chloride) coagulants with different characteristics have been trial-produced in laboratories and commercially produced, but the selection of a proper PACl still requires empirical information and field testing. Even PACls with the same property sometimes show different coagulation performances. In this study, we compared PACls produced by AlCl-titration and Al(OH)-dissolution on their performance during coagulation-flocculation, sedimentation, and sand filtration (CSF) processes.
View Article and Find Full Text PDFBecause of the eminent adsorptive capacity and rate for dissolved organic molecules compared to conventionally-sized powdered activated carbon (PAC), super-fine powdered activated carbon (SPAC) is gathering momentum for use in not only the pretreatment for membrane filtration for drinking water purification but also the conventional water purification process consisting of coagulation-flocculation, sedimentation, and rapid sand-filtration (CSF). However, the probability of SPAC particles to leak through a sand bed is higher than that of PAC, and their strict leakage control is an issue to be challenged when applying SPAC to CSF. However, study focusing on very high particle removal, which yield residual concentrations down to around 100 particles/mL, has been very limited.
View Article and Find Full Text PDFSuperfine powdered activated carbon (SPAC; particle diameter ∼1 μm) has greater adsorptivity for organic molecules than conventionally sized powdered activated carbon (PAC). Although SPAC is currently used in the pretreatment to membrane filtration at drinking water purification plants, it is not used in conventional water treatment consisting of coagulation-flocculation, sedimentation, and rapid sand filtration (CSF), because it is unclear whether CSF can adequately remove SPAC from the water. In this study, we therefore investigated the residual SPAC particles in water after CSF treatment.
View Article and Find Full Text PDF