Publications by authors named "Yoshie Shimauchi-Matsukawa"

Cone photoreceptor subtypes having different spectral sensitivities exhibit different recovery kinetics in their photoresponses in some vertebrates. Phosphorylation by G protein-coupled receptor kinase (GRK) is essential for the rapid inactivation of light-activated visual pigment, which is the rate-limiting step of the cone photoresponse recovery in salamander. In this study we compared the rate of light-dependent phosphorylation by GRK7 of carp green- and blue-sensitive cone visual pigments.

View Article and Find Full Text PDF

After bleaching of visual pigment in vertebrate photoreceptors, all-trans retinal is reduced to all-trans retinol by retinol dehydrogenases (RDHs). We investigated this reaction in purified carp rods and cones, and we found that the reducing activity toward all-trans retinal in the outer segment (OS) of cones is >30 times higher than that of rods. The high activity of RDHs was attributed to high content of RDH8 in cones.

View Article and Find Full Text PDF

Purpose: Rods and cones differ in their photoresponse characteristics, morphology, and susceptibilities to certain diseases. To contribute to the studies at the molecular level of these differences, we tried to identify genes expressed preferentially in rods or cones.

Methods: From purified carp rods and cones, we extracted their RNA and obtained corresponding cDNA pools (rod cDNA and cone cDNA).

View Article and Find Full Text PDF

In the vertebrate retina, rods mediate twilight vision and cones mediate daylight vision. Their photoresponse characteristics are different. The light-sensitivity of a cone is 10(2)-10(3) times lower than that of a rod.

View Article and Find Full Text PDF

Purpose: Visual pigment is phosphorylated and inactivated after light stimulus. The responsible enzyme is known as rhodopsin kinase or G-protein-coupled receptor kinase 1 (GRK1) in rods. We recently showed that the kinase in cones (GRK7) has much higher activity than GRK1 in rods in carp retina.

View Article and Find Full Text PDF

Cone photoreceptors show briefer photoresponses than rod photoreceptors. Our previous study showed that visual pigment phosphorylation, a quenching mechanism of light-activated visual pigment, is much more rapid in cones than in rods. Here, we measured the early time course of this rapid phosphorylation with good time resolution and directly compared it with the photoresponse time course in cones.

View Article and Find Full Text PDF