Publications by authors named "Yoshie S Momonoki"

Cholinesterase is consisting of acetylcholinesterase (AChE) and pseudocholinesterase in vertebrates and invertebrates. gene has been identified in several plant species, while pseudocholinesterase gene has not yet been found in any plant species. In this study, we report that the gene paralog encodes propionylcholinesterase (PChE), a pseudocholinesterase in rice.

View Article and Find Full Text PDF

Acetylcholinesterase (AChE), an acetylcholine-hydrolyzing enzyme, exists widely in plants, although its role in plant signal transduction is still unclear. We have hypothesized that the plant AChE regulates asymmetric distribution of hormones and substrates due to gravity stimulus, based on indirect pharmacological experiments using an AChE inhibitor. As a direct evidence for this hypothesis, our recent study has shown that AChE overexpression causes an enhanced gravitropic response in rice seedlings and suggested that the function of the rice AChE relates to the promotion of shoot gravitropism in the seedlings.

View Article and Find Full Text PDF

Acetylcholine (ACh), a known neurotransmitter in animals and acetylcholinesterase (AChE) exists widely in plants, although its role in plant signal transduction is unclear. We previously reported AChE in Zea mays L. might be related to gravitropism based on pharmacological study using an AChE inhibitor.

View Article and Find Full Text PDF

Our recent study reported that maize acetylcholinesterase (AChE) activity in the coleoptile node is enhanced through a post-translational modification response to heat stress and transgenic plants overexpressing maize AChE gene had an elevated heat tolerance, which strongly suggests that maize AChE plays a positive, important role in maize heat tolerance. Here we present (1) maize AChE activity in the mesocotyl also enhances during heat stress and (2) maize AChE mainly localizes in vascular bundles including endodermis and epidermis in coleoptile nodes and mesocotyls of maize seedlings.

View Article and Find Full Text PDF

We previously reported that native tropical zone plants showed high acetylcholinesterase (AChE) activity during heat stress, and that AChE activity in endodermal cells of maize seedlings was increased by heat treatment. However, the physiological role of AChE in heat stressed plants is still unclear. Here we report (1) tissue-specific expression and subcellular localization of maize AChE, (2) elevation of AChE activity and possible post-translational modifications of this enzyme under heat stress, and (3) involvement of AChE in plant heat stress tolerance.

View Article and Find Full Text PDF

The ACh-mediated system consisting of acetylcholine (ACh), acetylcholine receptor (AChR) and acetylcholinesterase (AChE) is fundamental for nervous system function in animals and insects. Although plants lack a nervous system, both ACh and ACh-hydrolyzing activity have been widely recognized in the plant kingdom. The function of the plant ACh-mediated system is still unclear, despite more than 30 years of research.

View Article and Find Full Text PDF

A cDNA encoding tomato fruit lectin was cloned from an unripe cherry-tomato fruit cDNA library. The isolated lectin cDNA contained an open reading frame encoding 365 amino acids, including peptides that were sequenced. The deduced sequence consisted of three distinct domains: (i) an N-terminal short extensin-like domain; (ii) a Cys-rich carbohydrate binding domain composed of four almost identical chitin-binding domains; (iii) an internal extensin-like domain of 101 residues containing 15 SerPro(4) motifs inserted between the first and second chitin-binding domains.

View Article and Find Full Text PDF

Acetylcholinesterase (AChE) has been increasingly recognized in plants by indirect evidence of its activity. Here, we report purification and cloning of AChE from maize (Zea mays), thus providing to our knowledge the first direct evidence of the AChE molecule in plants. AChE was identified as a mixture of disulfide- and noncovalently linked 88-kD homodimers consisting of 42- to 44-kD polypeptides.

View Article and Find Full Text PDF

We found a 2S storage albumin from the seed of tomato ( Lycopersicon esculentum L. cv. Cherry) that cross-reacted with antiserum to the fruit lectin, and named it Lec2SA.

View Article and Find Full Text PDF

We show that the expression of an indole-3-acetic acid (IAA)-modified protein from bean seed, IAP1, is correlated to the developmental period of rapid growth during seed development. Moreover, this protein undergoes rapid degradation during germination. The gene for IAP1, the most abundant protein covalently modified by IAA (iap1, GenBank accession no.

View Article and Find Full Text PDF