Achieving atomic-level characterization of the diamond (001) surface has been a persistent goal over recent decades. This pursuit aims to understand the smooth growth of diamonds and investigate surface defects and adsorbates relevant to applications. However, the inherently low conductivity and the short C-C bonds present significant challenges for atomic resolution imaging.
View Article and Find Full Text PDFWe demonstrate on-surface deprotection of methylenedioxy groups which yielded graphene nanoribbons (GNRs) with edges functionalized by hydroxy groups. While anthracene trimer precursors functionalized with hydroxy groups did not yield GNRs, it was found that hydroxy groups are first protected as methylenedioxy groups and then deprotected during the cyclo-dehydrogenation process to form GNRs with hydroxy groups. The X-ray photoemission spectroscopy and non-contact atomic force microscopy studies revealed that ∼20% of the methylenedioxy turned into hydroxy groups, while the others were hydrogen-terminated.
View Article and Find Full Text PDFHelicene is a functional material with chirality caused by its characteristic helical geometry. The inversion of its helicity by external stimuli is a challenging task in the advanced control of the molecular chirality. This study fabricated a novel helical molecule, specifically a pentahelicene-analogue twisted aromatic hydrocarbon fused with a graphene nanoribbon, on-surface synthesis using multiple precursors.
View Article and Find Full Text PDFFormic acid (HCOOH) can be catalytically decomposed into H and CO and is a promising hydrogen storage material. As H production catalysts, Cu surfaces allow selective HCOOH decarboxylation; however, the on-surface HCOOH decomposition reaction pathway remains controversial. In this study, the temperature dependence of the HCOOH/Cu(111) adsorption structures is elucidated by scanning tunneling microscopy and non-contact atomic force microscopy, establishing the adsorbate chemical species using density functional theory.
View Article and Find Full Text PDFPerforming bottom-up synthesis by using molecules adsorbed on a surface is an effective method to yield functional polycyclic aromatic hydrocarbons (PAHs) and nanocarbon materials. The intramolecular cyclodehydrogenation of hydrocarbons is a critical process in this synthesis; however, thus far, its elementary steps have not been elucidated thoroughly. In this study, we utilize the metal tip of a low-temperature noncontact atomic force microscope as a manipulable metal surface to locally activate dehydrogenation for PAH-forming cyclodehydrogenation.
View Article and Find Full Text PDFWe have revealed processes of the tip apex distortion in the measurements of non-contact scanning force microscopy. High-spatial-resolution two-dimensional force mapping on KCl(100) surfaces for a large number of tips, seven tips, enabled us to see the complex behavior of the tip apex distortion. The tips are from Si without additional coating, but are altered by the tip-sample interaction and show the behavior of different atomic species.
View Article and Find Full Text PDFOn-surface synthesis is a powerful method for fabricating atomically precise graphene nanoribbons (GNRs), but the products always include defective structures. In this study, scanning tunnelling microscopy and atomic force microscopy were used to determine the length distribution of armchair-edge GNRs with a width of seven carbon atoms (7-AGNRs) synthesised on Au(111) and to characterise defective structures. The product quality was improved by increasing the precursor deposition amount because of a preference for intermolecular polymerisation over intramolecular cyclodehydrogenation at a high coverage.
View Article and Find Full Text PDFChemical identification of individual surface atoms has been achieved by measuring the chemical bonds between tip and surface atoms using atomic force microscopy. On the other hand, the discrimination of chemical species at the tip apex is still a challenging task, even though the differences of the species have significant effects on atomic-scale contrast and atom manipulation. Here, we perform the chemical identification of a foremost tip atom using bond energies measured on precharacterized atomic species on a Si surface.
View Article and Find Full Text PDFLocalized electronic spin state in molecules has a relatively long spin lifetime and has thus attracted much attention. In this study, we characterize the magnetoresistance of a system comprising Pt and Fe(II)-phthalocyanine (FePc) molecules. The magnetoresistance measurement with the weak antilocalization analysis reveals that a magnetic moment in FePc acts as magnetic impurities for conduction electrons in Pt.
View Article and Find Full Text PDFPhys Rev Lett
September 2018
We demonstrated that a nitric oxide (NO) molecule on Cu(110) acts as an "ON-OFF-ON toggle switch" that can be turned on and off by repulsive force and electron injection, respectively. On the surface, NO molecules exist in three configurations: flat along the [001] direction (ON), upright (OFF), and flat along [001[over ¯]] (ON). An NO-functionalized tip, which was characterized by scanning tunneling microscopy and inelastic electron tunneling spectroscopy, can convert an upright NO adsorbate into a flat-lying NO.
View Article and Find Full Text PDFA core-expanded, pyrrole-fused azacoronene analogue containing two unusual N-doped heptagons was obtained from commercially available octafluoronaphthalene and 3,4-diethylpyrrole in two steps as a heteroatom-doped nonplanar nanographene. Full fusion with the formation of the tetraazadipleiadiene framework and the longitudinally twisted structure was unambiguously confirmed by single-crystal X-ray diffraction analysis. The edge-to-edge dihedral angle along the acene moiety was 63°.
View Article and Find Full Text PDFControlling the structural deformation of organic molecules can drive unique reactions that cannot be induced only by thermal, optical or electrochemical procedures. However, in conventional organic synthesis, including mechanochemical procedures, it is difficult to control skeletal rearrangement in polycyclic aromatic hydrocarbons (PAHs). Here, we demonstrate a reaction scheme for the skeletal rearrangement of PAHs on a metal surface using high-resolution noncontact atomic force microscopy.
View Article and Find Full Text PDFElectronegativity is a fundamental concept in chemistry. Despite its importance, the experimental determination has been limited only to ensemble-averaged techniques. Here, we report a methodology to evaluate the electronegativity of individual surface atoms by atomic force microscopy.
View Article and Find Full Text PDFNoble metal nanostructures dispersed on metal oxide surfaces have applications in diverse areas such as catalysis, chemical sensing, and energy harvesting. Their reactivity, chemical selectivity, stability, and light absorption properties are controlled by the interactions at the metal/oxide interface. Single-atom metal adsorbates on the rutile TiO(110)-(1 × 1) surface have become a paradigmatic model to characterize those interactions and to understand the unique electronic properties of these supported nanostructures.
View Article and Find Full Text PDFLocal defects in water layers growing on metal surfaces have a key influence on the wetting process at the surfaces; however, such minor structures are undetectable by macroscopic methods. Here, we demonstrate ultrahigh-resolution imaging of single water layers on a copper(110) surface by using non-contact atomic force microscopy (AFM) with molecular functionalized tips at 4.8 K.
View Article and Find Full Text PDFThe effects of Pb intercalation on the structural and electronic properties of epitaxial single-layer graphene grown on SiC(0001) substrate are investigated using scanning tunneling microscopy (STM), noncontact atomic force microscopy, Kelvin probe force microscopy (KPFM), X-ray photoelectron spectroscopy, and angle-resolved photoemission spectroscopy (ARPES) methods. The STM results show the formation of an ordered moiré superstructure pattern induced by Pb atom intercalation underneath the graphene layer. ARPES measurements reveal the presence of two additional linearly dispersing π-bands, providing evidence for the decoupling of the buffer layer from the underlying SiC substrate.
View Article and Find Full Text PDFThe classification of interaction forces between two approaching bodies is important in a wide range of research fields. Here, we propose a method to unambiguously extract the electrostatic force (F(ele)), which is one of the most significant forces. This method is based on the measurement of the energy dissipation under applied voltage pulse between an atomic force microscopy (AFM) tip and sample.
View Article and Find Full Text PDFAtomic force microscopy is capable of resolving the chemical structure of a single molecule on a surface. In previous research, such high resolution has only been obtained at low temperatures. Here we demonstrate that the chemical structure of a single molecule can be clearly revealed even at room temperature.
View Article and Find Full Text PDFWe assemble bistable silicon quantum dots consisting of four buckled atoms (Si4-QD) using atom manipulation. We demonstrate two competing atom switching mechanisms, downward switching induced by tunneling current of scanning tunneling microscopy (STM) and opposite upward switching induced by atomic force of atomic force microscopy (AFM). Simultaneous application of competing current and force allows us to tune switching direction continuously.
View Article and Find Full Text PDFSingle-atom/molecule manipulation for fabricating an atomic-scale switching device is a promising technology for nanoelectronics. So far, scanning probe microscopy studies have demonstrated several atomic-scale switches, mostly in cryogenic environments. Although a high-performance switch at room temperature is essential for practical applications, this remains a challenging obstacle to overcome.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
October 2014
We have used noncontact atomic force microscopy (NC-AFM) and scanning tunneling microscopy (STM) to study the rutile TiO(011) surface. A series of (2 × 1) reconstructions were observed, including two types of (4 × 1) reconstruction. High-resolution NC-AFM and STM images indicate that the (4 × 1)-α phase has the same structural elements as the more widely reported (2 × 1) reconstruction.
View Article and Find Full Text PDFQuantum degeneracy is an important concept in quantum mechanics with large implications to many processes in condensed matter. Here, we show the consequences of electron energy level degeneracy on the conductance and the chemical force between two bodies at the atomic scale. We propose a novel way in which a scanning probe microscope can detect the presence of degenerate states in atomic-sized contacts even at room temperature.
View Article and Find Full Text PDFNanoclusters supported on substrates are of great importance in physics and chemistry as well as in technical applications, such as single-electron transistors and nanocatalysts. The properties of nanoclusters differ significantly from those of either the constituent atoms or the bulk solid, and are highly sensitive to size and chemical composition. Here we propose a novel atom gating technique to assemble various atom clusters composed of a defined number of atoms at room temperature.
View Article and Find Full Text PDFThe effect of tip chemical reactivity on the lateral manipulation of intrinsic Si adatoms toward a vacancy site on a Si(111)-(7 × 7) surface has been investigated by noncontact atomic force microscopy at room temperature. Here we measure the atom-hopping probabilities associated with different manipulation processes as a function of the tip-surface distance by means of constant height scans with chemically different types of tips. The interactions between different tips and Si atoms are evaluated by force spectroscopic measurements.
View Article and Find Full Text PDF