Publications by authors named "Yoshiaki Sonoda"

Hematopoietic stem cell (HSC) heterogeneity and hierarchy are a current topic of interest, having major implications for clinical HSC transplantation and basic research on human HSCs. It was long believed that the most primitive HSCs in mammals, including mice and humans, were CD34 antigen positive (CD34). However, 2 decades ago, it was reported that murine long-term multilineage reconstituting HSCs were lineage marker negative (Lin, i.

View Article and Find Full Text PDF

Hematopoietic stem cell (HSC) biology is a current topic of interest having significant implications for clinical HSC transplantation and basic HSC research. It was long believed that the most primitive HSCs in mammals, including those in mice and humans, were CD34 antigen-positive (CD34) cells. However, Nakauchi et al.

View Article and Find Full Text PDF

Umbilical cord blood transplantation (UCBT) is often associated with delayed neutrophil and platelet recovery. Engraftment failure is another major obstacle. Several factors influence these serious complications, including the numbers of total nucleated cells (TNCs) and CD34 cells which have been used as reliable factors for selecting UCB units for transplantation.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers identified CD34-negative severe combined immunodeficiency (SCID)-repopulating cells as primitive hematopoietic stem cells in human cord blood.
  • Using a new ultra-high-resolution purification method with positive markers CD133 and GPI-80, the study successfully isolated single long-term repopulating CD34 HSCs.
  • The purified CD34 HSCs exhibited a distinct molecular signature and a strong ability to differentiate into megakaryocyte/erythrocyte progenitors, suggesting a new pathway for their commitment from cord blood.
View Article and Find Full Text PDF

It is generally thought that the proliferative capacity and differentiation potential of somatic stem cells, including mesenchymal stromal/stem cells (MSCs) and hematopoietic stem cells, decline with age. We investigated the effects of aging on human bone-derived MSCs expressing CD271 and SSEA-4 (double-positive MSCs [DPMSCs]). The percentages of DPMSCs in bone tissue decreased significantly with age.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have found that human hematopoietic stem cells (HSCs) exist in the CD34-negative fraction of human cord blood, which could be important for medical applications.
  • In experiments, both 13Lin and 18Lin CD34 cells were shown to effectively engraft in mice and sheep through specific injection methods, but not through standard transplantation approaches.
  • The study suggests that the limited homing ability of CD34 HSCs, influenced by specific markers like CD9 and CD26, is a key factor in their reduced capacity to populate the bone marrow niche.
View Article and Find Full Text PDF

In the murine hematopoietic stem cell (HSC) compartment, thrombopoietin (THPO)/MPL (THPO receptor) signaling plays an important role in the maintenance of adult quiescent HSCs. However, the role of THPO/MPL signaling in the human primitive HSC compartment has not yet been elucidated. We have identified very primitive human cord blood (CB)-derived CD34- severe combined immunodeficiency (SCID)-repopulating cells (SRCs) using the intra-bone marrow injection method.

View Article and Find Full Text PDF

Murine bone marrow (BM)-derived very small embryonic-like stem cells (BM VSELs), defined by a lineage-negative (Lin(-)), CD45-negative (CD45(-)), Sca-1-positive (Sca-1(+)) immunophenotype, were previously reported as postnatal pluripotent stem cells (SCs). We developed a highly efficient method for isolating Lin(-)CD45(-)Sca-1(+) small cells using enzymatic treatment of murine bone. We designated these cells as bone-derived VSELs (BD VSELs).

View Article and Find Full Text PDF

The use of dendritic cells (DC) to prime tumor-associated antigen-specific T-cell responses provides a promising approach to cancer immunotherapy. Embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) can differentiate into functional DCs, thus providing an unlimited source of DCs. However, the previously established methods of generating practical volumes of DCs from pluripotent stem cells (PSC) require a large number of PSCs at the start of the differentiation culture.

View Article and Find Full Text PDF

Hematopoietic stem cells (HSCs) are maintained in a specialized bone marrow (BM) niche, which consists of osteoblasts, endothelial cells, and a variety of mesenchymal stem/stromal cells (MSCs). However, precisely what types of MSCs support human HSCs in the BM remain to be elucidated because of their heterogeneity. In this study, we succeeded in prospectively isolating/establishing three types of MSCs from human BM-derived lineage- and CD45-negative cells, according to their cell surface expression of CD271 and stage-specific embryonic antigen (SSEA)-4.

View Article and Find Full Text PDF

It is well documented that specialized mesenchymal stem/stromal cells (MSCs) constitute the hematopoietic stem cell (HSC) niche in the bone marrow (BM), and these MSCs support/maintain the HSCs in an undifferentiated state. A number of studies have demonstrated that BM-derived MSCs (BM-MSCs) can support HSCs in vitro. However, it remains unclear whether nonhematopoietic tissue-derived MSC-like cells, such as dental pulp stem cells (DPSCs), have the ability to support HSCs.

View Article and Find Full Text PDF

Although c-kit is expressed highly on murine hematopoietic stem cells (HSCs) and essential for bone marrow (BM) hematopoiesis, the significance of the high level of expression of c-kit on HSCs was not well determined. We show here that CD150(+) CD48(-) Lineage(-) Sca-1(+) c-kit(+) HSCs in adult BM are distributed within the range of roughly a 20-fold difference in the expression level of c-kit, and that c-kit density correlates with the cycling status of the HSC population. This predisposition is more evident in the BM of mice older than 30 weeks.

View Article and Find Full Text PDF

Objective: We have successfully identified human cord blood (CB)-derived CD34-negative (CD34(-)) severe combined immunodeficiency (SCID)-repopulating cells (SRCs) with extensive lymphomyeloid repopulating ability using the intrabone marrow injection method. In our previous study, a limiting dilution analysis demonstrated the frequency of CD34(-) SRCs in CB-derived 13lineage-negative (Lin(-)) CD34(-) cells to be approximately 1/25,000. In this study, we intended to develop a high-resolution purification method to obtain highly purified CD34(-) SRCs.

View Article and Find Full Text PDF

OECs (outgrowth endothelial cells), also known as late-EPCs (late-endothelial progenitor cells), have a high proliferation potential in addition to in vitro tube formation capability. In ischaemic animal models, injected OECs were integrated into regenerating blood vessels and improved neovascularization. Previous reports have demonstrated the expression of CXCL8 to be up-regulated in ischaemic tissues.

View Article and Find Full Text PDF

Objective: Tissue stem cells in dental pulp are assumed to possess differentiation potentials similar to mesenchymal stem cells (MSCs). The aim of this in vitro study is to examine the differentiation potentials of mouse dental pulp stem cells (DPSCs) and develop the appropriate differentiation assay systems for skeletal myogenic differentiation of these cells.

Methods: Dental pulps were extracted from mandible sections of C57/BL6 mice, and adherent dental pulp cells were isolated in culture.

View Article and Find Full Text PDF

Stromal cell-derived factor 1 (SDF-1) and its receptor CXCR4 are the key regulatory molecules of hematopoietic stem cell (HSC) migration and engraftment to the bone marrow (BM) microenvironment. However, the significance of the ligand-receptor complex on HSC in steady-state BM is not clear. There is currently a lack of information as to how CXCR4 is expressed on HSCs.

View Article and Find Full Text PDF

We examined smoking prevalence among dentists in Hyogo, Japan, as smoking would influence their smoking cessation interventions to encourage their patients to stop smoking. In 2003, a self-administered questionnaire was mailed to all members of the Hyogo Dental Association (HDA) in Japan. Of the 1,133 members of the HDA, 327 were current smokers (28.

View Article and Find Full Text PDF

CD1d-restricted invariant NKT (iNKT) cells play crucial roles in various types of immune responses, including autoimmune diseases, infectious diseases and tumor surveillance. The mechanisms underlying their adjuvant functions are well understood. Nevertheless, although IL-4 and IL-10 production characterize iNKT cells able to prevent or ameliorate some autoimmune diseases and inflammatory conditions, the precise mechanisms by which iNKT cells exert immune regulatory function remain elusive.

View Article and Find Full Text PDF

Objective: Dietary restriction (DR) without malnutrition is widely acknowledged to prolong lifespan in laboratory animals. Evidence suggests that DR retards age-related decline in protein turnover of most organs. However, there has been no report about hepatic serum glycoprotein catabolism under DR.

View Article and Find Full Text PDF

The biology of hematopoietic stem cell (HSC) is a current topic of interest which has important implications for clinical HSC transplantation as well as for the basic research of HSC. The most primitive HSCs in mammals, including mice and humans, have long been believed to be CD34 antigen (Ag)-positive (CD34(+)) cells. In fact, bone marrow (BM), peripheral blood (PB), and cord blood (CB) stem cell transplantation studies indicate that a CD34(+) subpopulation in the BM, PB, or CB can provide durable long-term donor-derived lymphohematopoietic reconstitution.

View Article and Find Full Text PDF

Current in vitro culture systems allow the generation of human dendritic progenitor cells (CFU-DCs). The aim of this study was to assess the effect of Flt3 ligand (FL) on the proliferation of human peripheral blood-derived myeloid CFU-DCs and their differentiation into more committed precursor cells (pDCs) using in vitro culture systems. Immunomagnetically separated CD34+ cells were cultured in serum-free, as well as in serum-containing, liquid suspension cultures to investigate the expansion and/or proliferation/differentiation of CFU-DCs, pDCs, and more mature dendritic cells (DCs).

View Article and Find Full Text PDF

Recently, we have identified human cord blood (CB)-derived CD34-negative (CD34(-)) severe combined immunodeficiency (SCID)-repopulating cells (SRCs) using the intra-bone marrow injection (IBMI) method (Blood 2003;101:2924). In contrast to murine CD34(-) Kit(+)Sca-1(+)Lineage(-) (KSL) cells, human CB-derived Lin(-)CD34(-) cells did not express detectable levels of c-kit by flow cytometry. In this study, we have investigated the function of flt3 in our identified human CB-derived CD34(-) SRCs.

View Article and Find Full Text PDF