Publications by authors named "Yoshiaki Minezaki"

Background: In addition to structural domains, most eukaryotic proteins possess intrinsically disordered (ID) regions. Although ID regions often play important functional roles, their accurate identification is difficult. As human transcription factors (TFs) constitute a typical group of proteins with long ID regions, we regarded them as a model of all proteins and attempted to accurately classify TFs into structural domains and ID regions.

View Article and Find Full Text PDF

A systematic survey of intrinsically disordered (ID) regions was carried out in 2109 human plasma membrane proteins with full assignment of the transmembrane topology with respect to the lipid bilayer. ID regions with 30 consecutive residues or more were detected in 41.0% of the human proteins, a much higher percentage than the corresponding figure (4.

View Article and Find Full Text PDF

It is desirable to estimate a tree of life, a species tree including all available species in the 3 superkingdoms, Archaea, Bacteria, and Eukaryota, using not a limited number of genes but full-scale genome information. Here, we report a new method for constructing a tree of life based on protein domain organizations, that is, sequential order of domains in a protein, of all proteins detected in a genome of an organism. The new method is free from the identification of orthologous gene sets and therefore does not require the burdensome and error-prone computation.

View Article and Find Full Text PDF

Assignment of all transcription factors (TFs) from genome sequence data is not a straightforward task due to the wide variation in TFs among different species. A DNA binding domain (DBD) and a contiguous non-DBD with a characteristic SCOP or Pfam domain combination are observed in most members of TF families. We found that most of the experimentally verified TFs in prokaryotes are detectable by a combination of SCOP or Pfam domains assigned to DBDs and non-DBDs.

View Article and Find Full Text PDF

Human transcriptional regulation factors, such as activators, repressors, and enhancer-binding factors are quite different from their prokaryotic counterparts in two respects: the average sequence in human is more than twice as long as that in prokaryotes, while the fraction of sequence aligned to domains of known structure is 31% in human transcription factors (TFs), less than half of that in bacterial TFs (72%). Intrinsically disordered (ID) regions were identified by a disorder-prediction program, and were found to be in good agreement with available experimental data. Analysis of 401 human TFs with experimental evidence from the Swiss-Prot database showed that as high as 49% of the entire sequence of human TFs is occupied by ID regions.

View Article and Find Full Text PDF

Much attention has been paid recently to proteins with partially or fully disordered structures, which are found to exist mostly in eukaryotes and are involved mainly in pivotal cellular processes such as transcriptional regulation, translation and cellular signal transduction. Long disordered sequences are sometimes inserted within the single structural domains of proteins, forming loops from the molecular surface. Such intrinsically disordered loops (IDLs) either are invisible in X-ray crystallography, or hamper protein crystallization itself due to great flexibility.

View Article and Find Full Text PDF

Crystallization of a large single crystal of a B-DNA decamer, d(CCATTAATGG), for a neutron-diffraction experiment has been accomplished by an analysis of its solubility phase diagram and a large single crystal was successfully crystallized at around the minimum solubility point of the oligonucleotide: 30%(v/v) MPD, 100 mM MgCl(2) pD 6.6 using 0.4 ml D(2)O solutions of the DNA (sample concentration 1.

View Article and Find Full Text PDF