Regnase-1 is an RNase that directly cleaves mRNAs of inflammatory genes such as IL-6 and IL-12p40, and negatively regulates cellular inflammatory responses. Here, we report the structures of four domains of Regnase-1 from Mus musculus-the N-terminal domain (NTD), PilT N-terminus like (PIN) domain, zinc finger (ZF) domain and C-terminal domain (CTD). The PIN domain harbors the RNase catalytic center; however, it is insufficient for enzymatic activity.
View Article and Find Full Text PDFTLR4 triggers LPS signaling through the adaptors Toll/IL-1R domain-containing adaptor molecule (TICAM)-2 (also called TRAM) and TICAM-1 (also called TRIF), together with Toll/IL-1R domain-containing adaptor protein (TIRAP) and MyD88. The MyD88 pathway mediates early phase responses to LPS on the plasma membrane, whereas the TICAM pathway mediates late-phase responses, which induce the production of type I IFN and activation of inflammasomes. TICAM-2 bridges TLR4 and TICAM-1 for LPS signaling in the endosome.
View Article and Find Full Text PDFHomotypic and heterotypic interactions between Toll/interleukin-1 receptor (TIR) domains in Toll-like receptors (TLRs) and downstream adaptors are essential to evoke innate immune responses. However, such oligomerization properties present intrinsic difficulties in structural studies of TIR domains. Here, using BB-loop mutations that disrupt homotypic interactions, we determined the structures of the monomeric TIR domain-containing adaptor molecule (TICAM)-1 and TICAM-2 TIR domains.
View Article and Find Full Text PDFFragile X syndrome is caused by expansion of a d(CGG) triplet repeat in the 5'-untranslated region of the first exon of the FMR1 gene resulting in silencing of the gene. The d(CGG) repeat has been reported to form hairpin and quadruplex structures in vitro, and formation of these higher structures could be responsible for its unstable expansion in the syndrome, although molecular mechanisms underlying the repeat expansion still remain elusive. We have previously proved that UP1, a proteolytic product of hnRNP A1, unfolds the intramolecular quadruplex structures of d(GGCAG)5 and d(TTAGGG)4 and abrogates the arrest of DNA synthesis at d(GGG)n sites.
View Article and Find Full Text PDFHeterogeneous nuclear ribonucleoprotein D, also known as AUF1, has two DNA/RNA-binding domains, each of which can specifically bind to single-stranded d(TTAGGG)n, the human telomeric repeat. Here, the structure of the C-terminal-binding domain (BD2) complexed with single-stranded d(TTAGGG) determined by NMR is presented. The structure has revealed that each residue of the d(TAG) segment is recognized by BD2 in a base-specific manner.
View Article and Find Full Text PDFThe minisatellite DNA Pc-1 consists of tandem repeats of d(GGCAG). We previously reported that a d(GGCAG)n strand folds into an intramolecular quadruplex under physiological conditions and that during replication the progression of DNA polymerase is blocked by the quadruplex in vitro. Therefore, the formation of the quadruplex was supposed to be responsible for the hypermutable features of Pc-1.
View Article and Find Full Text PDFThe mouse hypervariable minisatellite (MN) Pc-1 consists of tandem repeats of d(GGCAG) and flanked sequences. We have previously demonstrated that single-stranded d(GGCAG)(n) folds into the intramolecular folded-back quadruplex structure under physiological conditions. Because DNA polymerase progression in vitro is blocked at the repeat, the characteristic intramolecular quadruplex structure of the repeat, at least in part, could be responsible for the hypermutable feature of Pc-1 and other MNs with similar repetitive units.
View Article and Find Full Text PDF