Publications by authors named "Yordanka Velikova"

Purpose: Segmenting ultrasound images is important for precise area and/or volume calculations, ensuring reliable diagnosis and effective treatment evaluation for diseases. Recently, many segmentation methods have been proposed and shown impressive performance. However, currently, there is no deeper understanding of how networks segment target regions or how they define the boundaries.

View Article and Find Full Text PDF

Purpose: Ultrasound (US) imaging, while advantageous for its radiation-free nature, is challenging to interpret due to only partially visible organs and a lack of complete 3D information. While performing US-based diagnosis or investigation, medical professionals therefore create a mental map of the 3D anatomy. In this work, we aim to replicate this process and enhance the visual representation of anatomical structures.

View Article and Find Full Text PDF

Purpose: The detection and treatment of abdominal aortic aneurysm (AAA), a vascular disorder with life-threatening consequences, is challenging due to its lack of symptoms until it reaches a critical size. Abdominal ultrasound (US) is utilized for diagnosis; however, its inherent low image quality and reliance on operator expertise make computed tomography (CT) the preferred choice for monitoring and treatment. Moreover, CT datasets have been effectively used for training deep neural networks for aorta segmentation.

View Article and Find Full Text PDF