Publications by authors named "Yoonwoo Hwang"

The design and optimization of laser-Compton x-ray systems based on compact distributed charge accelerator structures can enable micron-scale imaging of disease and the concomitant production of beams of Very High Energy Electrons (VHEEs) capable of producing FLASH-relevant dose rates. The physics of laser-Compton x-ray scattering ensures that the scattered x-rays follow exactly the trajectory of the incident electrons, thus providing a route to image-guided, VHEE FLASH radiotherapy. The keys to a compact architecture capable of producing both laser-Compton x-rays and VHEEs are the use of X-band RF accelerator structures which have been demonstrated to operate with over 100 MeV/m acceleration gradients.

View Article and Find Full Text PDF

The development of compact quasimonoenergetic x-ray radiation sources based on laser Compton scattering (LCS) offers opportunities for novel approaches to medical imaging. However, careful experimental design is required to fully utilize the angle-correlated x-ray spectra produced by LCS sources. Direct simulations of LCS x-ray spectra are computationally expensive and difficult to employ in experimental optimization.

View Article and Find Full Text PDF

A 2-D electron energy analyzer is designed and constructed to measure the transverse and longitudinal energy distribution of low energy (<1 eV) electrons. The analyzer operates on the principle of adiabatic invariance and motion of low energy electrons in a strong longitudinal magnetic field. The operation of the analyzer is studied in detail and a design to optimize the energy resolution, signal to noise ratio, and physical size is presented.

View Article and Find Full Text PDF