Owing to their well-defined crystalline pore structures and ordered functional ionic groups along the skeleton, ionic covalent organic frameworks (iCOFs) exhibit excellent performance and have significant potential for use in energy storage and conversion devices. Herein, we for the first time developed cationic phosphonium COFs with high hydroxide conduction even with low ion exchange capacity (IEC). Specifically, we synthesized COFs containing quaternary phosphonium groups as excellent ion transport moieties.
View Article and Find Full Text PDFMacrocycles' unique properties of interacting with guest molecules have been an intriguing scientific endeavor for many decades. They are potentially practically useful for engineering applications, especially in energy and environmental applications. These applications are usually demanding, involving a high temperature, pH, voltage, etc.
View Article and Find Full Text PDFRecent evidence suggests that physiologically normal skin harbors pervasive mutant clones with cancer drivers. Normal skin has the highest burden of somatic mutations due to persistent ultraviolet exposure throughout life. The mutation burden exponentially increases with age and is further modified by skin site, sun-damage history, and skin phototype.
View Article and Find Full Text PDFRechargeable secondary batteries, widely used in modern technology, are essential for mobile and consumer electronic devices and energy storage applications. Lithium (Li)-ion batteries are currently the most popular choice due to their decent energy density. However, the increasing demand for higher energy density has led to the development of Li metal batteries (LMBs).
View Article and Find Full Text PDFIndian J Dermatol Venereol Leprol
August 2024
Ideal solid electrolytes for lithium (Li) metal batteries should conduct Li rapidly with low activation energy, exhibit a high Li transference number, form a stable interface with the Li anode, and be electrochemically stable. However, the lack of solid electrolytes that meet all of these criteria has remained a considerable bottleneck in the advancement of lithium metal batteries. In this study, we present a design strategy combining all of those requirements in a balanced manner to realize quasi-solid-state electrolyte-enabled Li metal batteries (LMBs).
View Article and Find Full Text PDFAnion exchange membrane fuel cell (AEMFC) is an emerging and promising technology that can help realize a carbon-neutral, sustainable economy. Also, compared to the proton exchange membrane counterpart, AEMFC can achieve comparable cell outputs with lower costs due to the applicability of non-platinum group metal electrocatalysts for the reaction on the electrodes' surfaces. However, the wide application of the AEMFCs has been impeded by the unsatisfactory stability and performance of the hydroxide-conductive membranes in the past.
View Article and Find Full Text PDFChiral nanomaterials with unique chiral configurations and biocompatible ligands have been booming over the past decade for their interesting chiroptical effect, unique catalytical activity, and related bioapplications. The catalytic activity and selectivity of chiral nanomaterials have emerged as important topics, that can be potentially controlled and optimized by the rational biochemical design of nanomaterials. In this review, chiral nanomaterials synthesis, composition, and catalytic performances of different biohybrid chiral nanomaterials are discussed.
View Article and Find Full Text PDFBackground: Although PD-1 blockade is effective for treating several types of cancer, the efficacy of this agent in glioblastoma is largely limited. To overcome non-responders and the immunosuppressive tumor microenvironment, combinational immunotherapeutic strategies with anti-PD-1 need to be considered. Here, we developed IL-12-secreting mesenchymal stem cells (MSC_IL-12) with glioblastoma tropism and evaluated the therapeutic effects of anti-PD-1, MSC_IL-12, and their combination against glioblastoma.
View Article and Find Full Text PDFPoly(ethylene oxide) (PEO)-based electrolytes are often used for Li conduction as they can dissociate the Li salts efficiently. However, high entanglement of the chains and lack of pathways for rapid ion diffusion limit their applications in advanced batteries. Recent developments in ionic covalent organic frameworks (iCOFs) showed that their highly ordered structures provide efficient pathways for Li transport, solving the limitations of traditional PEO-based electrolytes.
View Article and Find Full Text PDFRechargeable Li metal batteries have the potential to meet the demands of high-energy density batteries for electric vehicles and grid-energy storage system applications. Achieving this goal, however, requires resolving not only safety concerns and a shortened battery cycle life arising from a combination of undesirable lithium dendrite and solid-electrolyte interphase formations. Here, a series of microcrack-free anionic network polymer membranes formed by a facile one-step click reaction are reported, displaying a high cation conductivity of 3.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Single-atom catalysts (SACs) have been investigated and applied to energy conversion devices. However, issues of metal agglomeration, low metal loading, and substrate stability have hindered realization of the SACs' full potential. Recently, covalent organic framework (COF)-based SACs have emerged as promising materials to enable highly efficient catalytic reactions.
View Article and Find Full Text PDFLithium (Li)-metal batteries (LMBs) possess the highest theoretical energy density among current battery designs and thus have enormous potential for use in energy storage. However, the development of LMBs has been severely hindered by safety concerns arising from dendrite growth and unstable interphases on the Li anode. Covalent organic frameworks (COFs) incorporating either redox-active or anionic moieties on their backbones have high Li-ion (Li) conductivities and mechanical/chemical stabilities, so are promising for solid electrolyte interphases (SEIs) in LMBs.
View Article and Find Full Text PDFCircular RNA (circRNA) is a non-coding RNA with a covalently closed loop structure and usually more stable than messenger RNA (mRNA). However, coding sequences (CDSs) following an internal ribosome entry site (IRES) in circRNAs can be translated, and this property has been recently utilized to produce proteins as novel therapeutic tools. However, it is difficult to produce large proteins from circRNAs because of the low circularization efficiency of lengthy RNAs.
View Article and Find Full Text PDFChemically inert organic networks exhibiting electrical conductivity comparable to metals can advance organic electronics, catalysis, and energy storage systems. Covalent-organic frameworks (COFs) have emerged as promising materials for those applications due to their high crystallinity, porosity, and tunable functionality. However, their low conductivity has limited their practical utilization.
View Article and Find Full Text PDFThe molecular mechanisms underlying melanoma metastasis remain poorly understood. In this study, we aimed to delineate the mechanisms underlying gene expression alterations during metastatic potential acquisition and characterize the metastatic subclones within primary cell lines. We performed single-cell RNA sequencing of a poorly metastatic melanoma cell line (WM239A) and its subclones with high metastatic potential to the lung (113/6-4L) and the brain (131/4-5B1 and 131/4-5B2).
View Article and Find Full Text PDFThe lack of anion exchange membranes (AEMs) that possess both high hydroxide conductivity and stable mechanical and chemical properties poses a major challenge to the development of high-performance fuel cells. Improving one side of the balance between conductivity and stability usually means sacrificing the other. Herein, we used facile, high-yield chemical reactions to design and synthesize a piperidinium polymer with a polyethylene backbone for AEM fuel cell applications.
View Article and Find Full Text PDFBackground: Although cytoreductive surgery followed by adjuvant chemotherapy is effective as a standard treatment for early-stage ovarian cancer, the majority of ovarian cancer cases are diagnosed at the advanced stages with dissemination to the peritoneal cavity, leading to a poor prognosis. Therefore, it is crucial to understand the cellular and molecular mechanisms underlying metastasis and identify novel therapeutic targets.
Objective: In this study, we aimed to elucidate the mechanisms underlying gene expression alterations during the acquisition of metastatic potential and characterize the metastatic subpopulations within ovarian cancer cells.
Recent advances in adsorbents have improved the removal of mercury ions from wastewater. Metal-organic frameworks (MOFs) have been increasingly used as adsorbents due to their high adsorption capacity and ability to adsorb various heavy metal ions. UiO-66 (Zr) MOFs are mainly used because they are highly stable in aqueous solutions.
View Article and Find Full Text PDFWater purification is becoming increasingly important due to the scarcity and industrial contamination of water. Although traditional adsorbents such as activated carbon and zeolites can remove heavy metal ions from water, they have slow kinetics and low uptake. To address these problems, metal-organic framework (MOF) adsorbents have been developed, which are characterized by facile synthesis, high porosity, designability, and stability.
View Article and Find Full Text PDFDelayed closure of an open abdomen (OA) is a clinically challenging task despite its various modalities. It is substantially more difficult when the duration of OA treatment is prolonged due to a patient's condition. We introduced the management of a patient who had a delayed OA treatment spanning approximately 3 months due to severe abdominal contamination.
View Article and Find Full Text PDF