We found that an ionic liquid (IL) with a long alkyl chain moiety, 1-tetradecyl-3-methylimidazolium chloride (C14MIM·Cl), forms a single crystal after the addition of octanol in an alkane solvent. But the solution exhibits a structural change after adding a small amount of water. An optically clear solution is found within limits, and it is stable for several months.
View Article and Find Full Text PDFSurface crystallization at the vapor-liquid interface of the ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate) is observed in synchrotron x-ray diffraction studies. Sharp Bragg reflections emerge in grazing-angle x-ray diffraction patterns 37 °C above the bulk melting temperature, indicating the presence of a long-range ordered phase at the surface in coexistence with the bulk parent liquid. The unique structure of the vapor-liquid interface where butyl chains attached to the cations are expelled to the vapor side facilitates interionic electrostatic interactions that lead to the crystallization.
View Article and Find Full Text PDFJ Phys Condens Matter
March 2009
The density profiles of liquid/vapor interfaces of water-alcohol (methanol, ethanol and propanol) mixtures were studied by surface-sensitive synchrotron x-ray scattering techniques. X-ray reflectivity and diffuse scattering measurements, from the pure and mixed liquids, were analyzed in the framework of capillary wave theory to address the characteristic length scales of the intrinsic roughness and the shortest capillary wavelength (alternatively, the upper wavevector cutoff in capillary wave theory). Our results establish that the intrinsic roughness is dominated by average interatomic distances.
View Article and Find Full Text PDFWe investigated the structures of ionic liquids (1-butyl-3-methylimidazolium iodide [BMIM][I] and 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF4]) and their aqueous mixtures using attenuated total reflection (ATR) infrared absorption and Raman spectroscopy. The ATR spectrum in the CHx (x = 1, 2, 3) vibration region from 2800 to 3200 cm-1 was very different between [BMIM][BF4] and [BMIM][I] even though all the spectral features in this region were from the butyl chain and the imidazolium ring of the same cation. The spectrum did not change appreciably irrespective of the water concentration for [BMIM][BF4], whereas the spectrum from [BMIM][I] showed significant changes as the water concentration was increased, especially in CH-vibration modes from the imidazolium ring.
View Article and Find Full Text PDFMixtures of ionic liquid (IL, 1-butyl-3-methylimidazolium tetrafluoroborate, [BMIM][BF4]) and water with varying concentrations were studied by attenuated total reflection infrared absorption and Raman spectroscopy. Changes in the peak intensities and peak positions of CHx (x = 1, 2, 3) vibration modes of the cation of the IL and OH vibration modes of the water molecules were investigated. Peaks from normal-mode stretch vibrations of CH bonds belonging to the imidazolium ring of the cation did not change their positions, while those from the terminal methyl group of the butyl chain blueshifted by approximately 10 cm-1 with the addition of water.
View Article and Find Full Text PDF