Surface coating with dopamine (DA) has received significant attention over the past decade due to its compatibility with other surface coating techniques and versatility, making it applicable to solid surfaces regardless of substrate and shape. Much effort has been made to elucidate the origin of its surface coating capability, and as a result, many important factors affecting the coating properties have been determined. For example, it has been reported that the length of the carbon chain between catechol and amino groups, the attachment of specific functional groups to the catechol ring and amino group, and the replacement of the amino group with another functional group can affect the surface coating properties of DA.
View Article and Find Full Text PDFDopamine (DA) surface chemistry has received significant attention because of its applicability in a wide range of research fields and the ability to graft functional molecules onto numerous solid surfaces. Various DA derivatives have been newly synthesized to identify key factors affecting the coating efficiency and to advance the coating system development. The oxidation of catechol into quinone followed by internal cyclization via the nucleophilic attack of primary amine is crucial for DA-based surface coating.
View Article and Find Full Text PDFIt is known that 2,2,6,6-tetramethylpiperidinyl-1-oxy (or TEMPO) is a stable, radical-containing molecule, which has been utilized in various areas of organic synthesis, catalysis, polymer chemistry, electrochemical reactions, and materials chemistry. Its unique stability, attributable to its structural features, and molecular tunability allows for the modification of various materials, including the heterogenization of solid materials. Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) are porous and tunable because of their ligand or linker portion, and both have been extensively studied for use in catalytic applications.
View Article and Find Full Text PDFPalm mid-fraction (PMF), which has a high content of symmetric POP, was converted to asymmetric PPO (APMF) via acyl migration. After solvent fractionation, the liquid phase of acyl migrated PMF (APMF-L) was obtained and blended with hydrogenated coconut oil (HCO, 50:50, w/w) to produce a fat blend (namely, an alternative fat blend) which had reduced saturated fatty acid content while having similar melting behavior to HCO. In an alternative fat blend, the major fatty acids were lauric (27.
View Article and Find Full Text PDFFood Sci Biotechnol
August 2016
In the present study, the β-carotene contents of 14 plant food materials prepared by boiling, steaming, or baking or when they are raw were analyzed and compared. After boiling three pulse species, namely, peas, kidney beans, and dried mung beans, β-carotene contents of peas and kidney beans increased significantly, whereas that of mung beans (dried material) decreased. True retention factors of β-carotene contents in the cooked kidney beans, peas, and mung beans after boiling were 174.
View Article and Find Full Text PDF