The solid-electrolyte interphase (SEI) is a key element in anode-electrolyte interactions and ultimately contributes to improving the lifespan and fast-charging capability of lithium-ion batteries. The conventional additive vinyl carbonate (VC) generates spatially dense and rigid poly VC species that may not ensure fast Li transport across the SEI on the anode. Here, a synthetic additive called isosorbide 2,5-dimethanesulfonate (ISDMS) with a polar oxygen-rich motif is reported that can competitively coordinate with Li ions and allow the entrance of PF anions into the core solvation structure.
View Article and Find Full Text PDFElectrolyte additives with multiple functions enable the interfacial engineering of Li-metal batteries (LMBs). Owing to their unique reduction behavior, additives exhibit a high potential for electrode surface modification that increases the reversibility of Li-metal anodes by enabling the development of a hierarchical solid electrolyte interphase (SEI). This study confirms that an adequately designed SEI facilitates the homogeneous supply of Li, nonlocalized Li deposition, and low electrolyte degradation in LMBs while enduring the volume fluctuation of Li-metal anodes on cycling.
View Article and Find Full Text PDF