Publications by authors named "Yoong-Kee Choe"

Batteries based on zinc (Zn) chemistry offer a great opportunity for large-scale applications owing to their safety, cost-effectiveness, and environmental friendliness. However, the poor Zn reversibility and inhomogeneous electrodeposition have greatly impeded their practical implementation, stemming from water-related passivation/corrosion. Here, we present a multifunctional electrolyte comprising gamma-butyrolactone (GBL) and Zn(BF)·HO to resolve these intrinsic challenges.

View Article and Find Full Text PDF

The effect of the Pt shell thickness on the oxygen reduction reaction (ORR) of a Pd@Pt core-shell catalyst was studied using surface science technics and computational approaches. We found Pt shells on Pd rods to be negatively charged because of charge transfer from the Pd substrate when the shell thicknesses were 0.5 or 1 monolayer (ML).

View Article and Find Full Text PDF

The first trivalent and pentavalent tricarbabismatranes were synthesized by the reaction of N(CH{2-LiCH}) with BiCl and subsequent reaction with XeF, respectively. The trivalent bismatrane was easily oxidized by air, while the pentavalent bismatrane difluoride was relatively stable to air. A similar pentavalent bismatrance dichloride was prone to C-Cl bond reductive elimination even at room temperature.

View Article and Find Full Text PDF

We have successfully isolated and characterized the zinc carbamate complex (phen)Zn(OAc)(OC(=O)NHPh) (1; phen=1,10-phenanthroline), formed as an intermediate during the Zn(OAc) /phen-catalyzed synthesis of organic carbamates from CO , amines, and the reusable reactant Si(OMe) . Density functional theory calculations revealed that the direct reaction of 1 with Si(OMe) proceeds via a five-coordinate silicon intermediate, forming organic carbamates. Based on these results, the catalytic system was improved by using Si(OMe) as the reaction solvent and additives like KOMe and KF, which promote the formation of the five-coordinated silicon species.

View Article and Find Full Text PDF

The mechanism for the reaction of trimethylaluminum (TMA, Al(CH)) with ozone (O) was investigated in detail using density functional theory calculations to understand the atomic layer deposition processes that form aluminum oxide surfaces. We examined the reactions of TMA and some possible intermediates with O and revealed plausible paths to form methoxy (-OCH), formate (-OCHO), bicarbonate (-COH), and hydroxyl (-OH) species. These species have been observed in previous experimental studies.

View Article and Find Full Text PDF

Investigation of two common explosives such as cyclonite (RDX) and cyclotetramethylenetetranitramine (HMX) using a mass spectrometer with ultrahigh resolution and accuracy has not been comprehensively performed. Here, ultrahigh mass accuracy 15-T Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS) spectra were utilized to comprehensively characterize the adduct ions of RDX and HMX. Two different ionization sources such as a conventional electrospray ionization (ESI) source and a chip-based static nano-ESI source were used to investigate the adduct ions of RDX and HMX.

View Article and Find Full Text PDF

We present the current status of the finite-element method for large-scale atomistic simulations based on the density-functional theory. After a brief overview of our formulation, we describe recent developments, including the optimal choice of adaptive coordinates, an efficient implementation of the ground-state calculations, and a remedy for the eggbox effect. As a new application of our formulation, we present ab initio molecular dynamics simulations on sulfonated poly(4-phenoxybenzoyl-1,4-phenylene) (SPPBP), which is a typical example of polymer electrolyte membranes for fuel cells.

View Article and Find Full Text PDF

SPEEK is known to possess high proton conductivity at high water content, being comparable with other popular membranes used in fuel cells, such as Nafion and sulfonated polyethersulfone (SPES). However, much less is known about its fundamental properties, including the status of proton dissociation and spectral features. In this work, the properties of two model molecules of SPEEK, M1 (20 atoms), M2 (50 atoms) and their hydrated systems, M1 + nH2O and M2 + nH2O (n = 1-9), have been investigated using static electronic structure calculations and the ab initio molecular dynamics (MD) method.

View Article and Find Full Text PDF

A series of iridium tetrahydride complexes [Ir(H)(4)(PSiP-R)] bearing a tridentate pincer-type bis(phosphino)silyl ligand ([{2-(R(2)P)C(6)H(4)}(2)MeSi](-), PSiP-R, R=Cy, iPr, or tBu) were synthesized by the reduction of [IrCl(H)(PSiP-R)] with Me(4)N·BH(4) under argon. The same reaction under a nitrogen atmosphere afforded a rare example of thermally stable iridium(III)-dinitrogen complexes, [Ir(H)(2)(N(2))(PSiP-R)]. Two isomeric dinitrogen complexes were produced, in which the PSiP ligand coordinated to the iridium center in meridional and facial orientations, respectively.

View Article and Find Full Text PDF

The nature of proton dynamics as well as a pendant side chain's ability for proton dissociation and capture in low-hydration sulfonated polyethersulfone (SPES) (lambda = 2, 4) have been studied theoretically by means of quantum chemical calculations and first-principles molecular dynamics simulations. A detailed comparison of results on SPES with those on Nafion has been made. It is found that the sulfonic groups of Nafion tend to dissociate protons more easily than do those of SPES.

View Article and Find Full Text PDF

A new dibismuthane bearing a 5,6,7,12-tetrahydrodibenz[c,f][1,5]azabismocine framework was obtained in high yield by a unique reaction of the corresponding organobismuth oxide and organophosphorus compounds with a P(=O)H group.

View Article and Find Full Text PDF

First-principles molecular dynamics simulations have been carried out to investigate the nature of proton dynamics in Nafion, a representative polymer electrolyte membrane (PEM) widely used in PEM fuel cells. From the trajectories of the simulations, diffusion coefficients for the protonic defects were calculated to be 0.3 x 10(-5) cm(2) s(-1) and 7.

View Article and Find Full Text PDF

The effects of water content on water transport and electro-osmosis in a representative polymer electrolyte membrane, Nafion, are investigated in detail by means of first-principles molecular dynamics (MD) simulations in the presence of a homogeneous electric field. We have directly evaluated electro-osmotic drag coefficients (the number of water molecules cotransported with proton conduction) from the trajectories of the first-principles MD simulations and also explicitly evaluated factors that contribute to the electro-osmotic drag coefficients. In agreement with previously reported experiments, our calculations show virtually constant values ( approximately 1) of the electro-osmotic drag coefficients for both low and high water content states.

View Article and Find Full Text PDF

Palladium (Pd) generally prefers low oxidation states. So far, no stable Pd compound with a +5 oxidation state is known. Here, we report two multinuclear Pd compounds containing Pd centers ligated by five silicon (Si) atoms.

View Article and Find Full Text PDF

The properties of aqueous sulfuric acid have been studied employing density functional theory-based molecular dynamics simulations in conjunction with norm-conserving pseudopotentials. The simulations were carried out for two different concentrations whose molar concentrations were fixed at 0.84 and 10.

View Article and Find Full Text PDF

Time-dependent density functional theory has been applied to investigate the electronic absorption spectrum of oxidized and reduced lumiflavin and its derivative, 8-NH(2)-lumiflavin. The calculations allow the authors to explain the origin of the difference in spectral features between oxidized and reduced states of lumiflavin. For the reduced lumiflavin, a reasonable assignment of the experimental spectrum has been made for the first time.

View Article and Find Full Text PDF

The effect of axial ligands on the reactivity of high-valent iron(IV) oxo-porphyrins (Compound I) was investigated using the B3LYP hybrid density functional method. We studied alkane hydroxylation using four models: Compound I with thiolate, imidazole, phenolate, and chloride anions as axial ligands. The first three ligands were employed as models for cysteinate, histidine, and tyrosinate, respectively.

View Article and Find Full Text PDF

Nitric oxide (NO) is a messenger molecule implicated in a number of physiological processes. Nitrosation of selenoproteins has been suggested as playing an important role in NO-mediated cellular functions such as the inactivation of glutathione peroxidase (GPx), but no chemical information about Se-nitrosated species has been available to date. Here a stable Se-nitrososelenol (RSeNO), a new class of NO derivative, was synthesized and fully characterized by X-ray crystallography and spectroscopic methods.

View Article and Find Full Text PDF

N@C60 has a lower photochemical reactivity toward disilirane than C60, although N@C60 does not differ from C60 in its thermal reactivity; theoretical calculations reveal that N@C60 and C60 have the same orbital levels and that N@3C60* has a shorter lifetime than 3C60*.

View Article and Find Full Text PDF

The thermal decomposition of phenylchlorodiazirine (1), phenyl-n-butyldiazirine (2), and 2-adamantane-2,3'-[3H]diazirine (3) has been studied in solution in the presence of C(60). The C(60) probe technique indicates that in the decomposition diazirine 1 yielded exclusively phenylchlorocarbene, diazirine 2 yielded mainly a diazo intermediate, and diazirine 3 yielded a mixture of carbene and diazo compound. In the case of diazirine 2, 13% of (E)-1-phenyl-1-pentene resulted from the direct thermal rearrangement of diazirine without the participation of a carbene.

View Article and Find Full Text PDF

A new perturbation approach is proposed that enhances the low-order, perturbative convergence by modifying the zeroth-order Hamiltonian in a manner that enlarges any small-energy denominators that may otherwise appear in the perturbative expansion. This intruder state avoidance (ISA) method can be used in conjunction with any perturbative approach, but is most applicable to cases where small energy denominators arise from orthogonal-space states-so-called intruder states-that should, under normal circumstances, make a negligible contribution to the target state of interests. This ISA method is used with multireference Møller-Plesset (MRMP) perturbation theory on potential energy curves that are otherwise plagued by singularities when treated with (conventional) MRMP; calculation are performed on the 1(3)Sigma(-)(u) state of O(2); and the 2(1)Delta, 3(1)Delta, 2(3)Delta, and 3(3)Delta states of AgH.

View Article and Find Full Text PDF