Publications by authors named "Yoon-Ho Roh"

Extracellular vesicles (EVs) are promising for molecular diagnostics, but current analyses are limited by the rarity and compositional heterogeneity of EV protein expression. Therefore, single EV profiling methods require high sensitivity, multiplexing, and throughput to address these issues. Here a single EV analysis technique that utilizes squeezable methacrylated hyaluronic acid hydrogel microparticles (MHPs) is described as a scaffold to immobilize EVs and perform an integrated rolling circle amplification (RCA) assay for an ultra-sensitive and multiplex analysis of single EV proteins.

View Article and Find Full Text PDF

Whole blood viscosity, a hemorheological factor, is currently used for diagnosis, as it is correlated with various vascular diseases that are difficult to diagnose early with a general blood test. It was determined that it was necessary to set reference intervals for further studies and utilization of whole blood viscosity in cats, a representative companion animal, and this study was conducted. Fifty healthy cats were recruited for the study, and whole blood viscosity, complete blood count, and serum chemistry tests were performed.

View Article and Find Full Text PDF
Article Synopsis
  • Extracellular vesicles (EVs) are being studied as potential biomarkers for disease diagnosis, but current methods face challenges due to low biomarker levels and the complexity of EV properties.
  • A new double digital assay has been developed, allowing for the precise quantification of individual proteins from single EVs by using tyramide signal amplification (TSA) to enhance fluorescence signals.
  • The system successfully identified about 2.7 PD-L1 proteins per EV from melanoma cells, indicating its potential for profiling critical cancer biomarkers and contributing to better understanding of EV diversity and subtypes.
View Article and Find Full Text PDF

A two-year-old male Pomeranian dog was presented to a veterinary hospital due to the side effects of a surgical correction for patellar luxation. Stifle joint arthrodesis (SJA) was performed on the patient's right leg using autologous bone-grafting techniques. The right femur and tibial joint were angled 120-130°, and an SJA plate was fixed on the front of the two bones.

View Article and Find Full Text PDF

CRISPR/Cas systems offer a powerful sensing mechanism to transduce sequence-specific information into amplified analytical signals. However, performing multiplexed CRISPR/Cas assays remains challenging and often requires complex approaches for multiplexed assays. Here, a hydrogel-based CRISPR/Cas12 system termed CLAMP (Cas-Loaded Annotated Micro-Particles) is described.

View Article and Find Full Text PDF

A 9-year-old female mixed-breed dog presented for treatment of a presumed sphenoid-wing meningioma. Clinical signs included tonic-clonic seizures lasting <1 min, which had started 3 months previously. The physical examination results were unremarkable.

View Article and Find Full Text PDF

Hydrogel microparticle-based nucleic acid assays are an attractive detection platform based on their multiplexing capabilities with high sensitivity and specificity. A particular area of interest is single-nucleotide polymorphism (SNP) sensing, where multiple SNPs should be identified in a highly reliable yet economical manner. However, hydrogel microparticles leveraging probe-target hybridization as a key mechanism are hampered by small duplex stability differences arising from single base-pair mismatch.

View Article and Find Full Text PDF

Symphyseal distraction osteotomy (SDO) with a polymethyl methacrylate (PMMA) spacer is an effective surgical treatment for cats with pelvic stenosis. This study reports the successful treatment of urethral obstruction due to ischiocavernosus muscle (IM) tension after SDO with a PMMA spacer. A 2-year-old castrated male Korean domestic shorthair feline had megacolon and pelvic canal stenosis.

View Article and Find Full Text PDF

microRNAs (miRNAs) have attracted much attention as potential biomarkers for the diagnosis of various fatal diseases. With increasing interest in miRNA detection at practical sites, colorimetric bead-based assays have garnered much attention, because these allow for simple analysis with cheap and portable devices. Among them, the encoded hydrogel microparticle-based colorimetric miRNA assay is considered as one of the promising techniques, due to its strengths, such as large multiplex capacity, acceptable sensitivity, and simple analysis.

View Article and Find Full Text PDF

Corrective osteotomy has been applied to realign and stabilize the bones of dogs with lameness. However, corrective osteotomy for angular deformities requires substantial surgical experience for planning and performing accurate osteotomy. Three-dimensional printed patient-specific guides (3D-PSGs) were developed to overcome perioperative difficulties.

View Article and Find Full Text PDF

Discontinuous dewetting (DD) is an attractive technique that enables the production of large liquid arrays in microwells and is applicable to the synthesis of anisotropic microparticles with complex morphologies. However, such loading of liquids into microwells presents a significant challenge, as the liquids used in this technique should exhibit low mold surface wettability. This study introduces DD in a degassed mold (DM), a simple yet powerful technique that achieves uniform loading of microparticle precursors into large microwell arrays within 1 min.

View Article and Find Full Text PDF

Magnetic hydrogels have been commonly used in biomedical applications. As magnetite nanoparticles (MNPs) exhibit peroxidase enzyme-like activity, magnetic hydrogels have been actively used as signal transducers for biomedical assays. Droplet microfluidics, which uses photoinitiated polymerization, is a preferred method for the synthesis of magnetic hydrogels.

View Article and Find Full Text PDF

Despite a growing demand for more accessible diagnostic technologies, current methods struggle to simultaneously detect multiple analytes with acceptable sensitivity and portability. Colorimetric assays have been widely used due to their simplicity of signal readout, but the lack of multiplexibility has been a perpetual constraint. Meanwhile, particle-based assays offer multiplex detection by assigning an identity code to each analyte, but they often require lab-based equipment unsuitable for portable diagnostics.

View Article and Find Full Text PDF

Due to the growing interest in multiplex protein detection, encoded hydrogel microparticles have received attention as a possible path to high performance multiplex immunoassays through a combination of high multiplexing capability and enhanced binding kinetics. However, their practical operation in real complex samples is still limited because polyethylene glycol, which is the main component of hydrogel particles, suffers from oxidative damage and relatively high fouling properties in biochemical solutions. Here, we introduce poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC)-based encoded hydrogel microparticles to perform fouling-resistant multiplex immunoassays, where the anti-fouling characteristics are attributed to the zwitterionic PMPC.

View Article and Find Full Text PDF

Encoded hydrogel microparticles synthesized via flow lithography have drawn attention for multiplex biomarker detection due to their high multiplex capability and solution-like hybridization kinetics. However, the current methods for preparing particles cannot achieve a flexible, rapid probe-set modification, which is necessary for the production of various combinations of target panels in clinical diagnosis. In order to accomplish the unmet needs, streptavidin was incorporated into the encoded hydrogel microparticles to take advantage of the rapid streptavidin-biotin interactions that can be used in probe-set modification.

View Article and Find Full Text PDF

Flow lithography (FL), a versatile technique used to synthesize anisotropic multifunctional microparticles, has attracted substantial interest, given that the resulting particles with complex geometries and multilayered biochemical functionalities can be used in a wide variety of applications. However, after this process, there are double bonds remaining from the cross-linkable groups of monomers. The unreacted cross-linkable groups can affect the particles' biochemical properties.

View Article and Find Full Text PDF

Technologies for the detection and isolation of circulating tumor cells (CTCs) are essential in liquid biopsy, a minimally invasive technique for early diagnosis and medical intervention in cancer patients. A promising method for CTC capture, using an affinity-based approach, is the use of functionalized hydrogel microparticles (MP), which have the advantages of water-like reactivity, biologically compatible materials, and synergy with various analysis platforms. In this paper, we demonstrate the feasibility of CTC capture by hydrogel particles synthesized using a novel method called degassed mold lithography (DML).

View Article and Find Full Text PDF

Multiplex immunoassay, or the simultaneous detection of multiple proteins in a single sample, is expected to enable a new level of protein analysis across diverse disciplines, such as medical diagnostics and biomarker discovery. A bead-based assay using graphically encoded hydrogel microparticles synthesized using stop flow lithography has been a promising platform because of its high multiplex capacity and its superior sensitivity and dynamic range compared to the enzyme-linked immunosorbent assay (ELISA). The functionalization of these particles has been dependent on the use of a heterobifunctional linker to conjugate the capture antibodies on the hydrogel.

View Article and Find Full Text PDF

Encoded hydrogel microparticles, synthesized by Stop Flow Lithography (SFL), have shown great potential for microRNA assays for their capability to provide high multiplexing capacity and solution-like hybridization kinetics. However, due to the low conversion of copolymerization during particle synthesis, current hydrogel microparticles can only utilize ∼10% of the input probes that functionalize the particles for miRNA assay. Here, we present a novel method of functionalizing hydrogel microparticles after particle synthesis by utilizing unconverted double bonds remaining inside the hydrogel particles to maximize functional probe incorporation and increase the performance of miRNA assay.

View Article and Find Full Text PDF

In response to a growing demand for simultaneous detection of multiple proteins in a single sample, multiplex immunoassay platforms have emerged at the forefront of proteomic analysis. In particular, detections using graphically encoded hydrogel microparticles synthesized via flow lithography have received attention for integrating a hydrogel, a substrate that can provide enhanced kinetics and high loading capacity, into the bead-based multiplex platform. Currently, the method of microparticle functionalization involves copolymerization of antibodies with the gel during particle synthesis.

View Article and Find Full Text PDF

Various thermo-responsive polymers have been developed for controlled drug delivery upon the local application of external heat. The development of thermo-responsive polymers with high biocompatibility and tunable thermo-sensitivity is crucial for safe and efficient therapeutic application. In this study, thermo-responsive drug carriers featuring tunable thermo-sensitivities were synthesized using biocompatible poly(N-vinyl caprolactam) (PVCL) and stop-flow lithography.

View Article and Find Full Text PDF

Encoded hydrogel particles have attracted attention in diagnostics as these particles can be used for high-performance multiplexed assays. Here, we present encoded tetragonal hydrogel microparticles for multiplexed detection of miRNAs that are strongly related to Alzheimer's disease (AD). The particles are comprised of vertically distinct code and probe regions, and incorporated with quantum dots (QDs) in the code regions.

View Article and Find Full Text PDF

Stimuli-responsive carriers releasing multiple drugs have been researched for synergistic combinatorial cancer treatment with reduced side-effects. However, previously used drug carriers have limitations in encapsulating multiple drug components in a single carrier and releasing each drug independently. In this work, pH-sensitive, multimodulated, anisotropic drug carrier particles are synthesized using an acid-cleavable polymer and stop-flow lithography.

View Article and Find Full Text PDF