Publications by authors named "Yoon Shon"

InZnP:Ag nano-rods fabricated by the ion milling method were thermally annealed in the 250~350 °C temperature range and investigated the optimum thermal annealing conditions to further understand the mutual correlation between the optical properties and the microscopic magnetic properties. The formation of InZnP:Ag nano-rods was determined from transmission electron microscopy (TEM), total reflectivity and Raman scattering analyses. The downward shifts of peak position for LO and TO modes in the Raman spectrum are indicative of the production of Ag ion-induced strain during the annealing process of the InZnP:Ag nano-rod samples.

View Article and Find Full Text PDF

The formation, including the density and height of the InFeP:Ag nanorods doped with noble metal Ag using an ion milling method, was preponderantly determined from transmission electron microscopy and x-ray diffraction analyses. We investigate, in particular, the enhanced ferromagnetism of the well-aligned InFeP:Ag nanorods. Auger electron spectroscopy and x-ray photoelectron spectroscopy measurements were carried out in order to investigate the incorporation of Ag and to verify the local chemical bonding of the InFeP:Ag nanorods.

View Article and Find Full Text PDF

We report on the transport and magnetic properties of graphene annealed at 800 °C under an Ar atmosphere. Temperature dependence of resistivity of the annealed graphene shows that the ferromagnetic Curie temperature can be observed from the magnetoimpurity model. The Curie temperature is 220 K for the annealed graphene.

View Article and Find Full Text PDF

We report the room-temperature ferromagnetism in transition metals (Co, Ni)-doped 8-hydroxy-quinoline aluminum (Alq3) by thermal coevaporation of high purity metal and Alq3 powders. For 5% Co-doped Alq3, a maximum magnetization of approximately 0.33 microB/Co at 10 K was obtained and ferromagnetic behavior was observed up to 300 K.

View Article and Find Full Text PDF