Publications by authors named "Yoon Jang Chung"

Extended shortwave infrared (eSWIR) photodetectors that employ solution-processable semiconductors have attracted attention for use in applications such as ranging, night vision, and gas detection. Colloidal quantum dots (CQDs) are promising materials with facile bandgap tunability across the visible-to-mid-infrared wavelengths. However, toxic elements, such as Hg and Pb, and the slow response time of CQD-based IR photodetectors, limit their commercial viability.

View Article and Find Full Text PDF

In general, the electronic and optical properties of oxide films can significantly benefit from highly textured crystallinity. However, oxide films grown by atomic layer deposition (ALD), a powerful technique for the synthesis of high-quality, nanoscale thin films, usually exhibit amorphous or randomly oriented polycrystalline phases. Here, we demonstrate the growth of highly textured rutile phase ALD TiO films through rational substrate design.

View Article and Find Full Text PDF

Nanophase mixtures, leveraging the complementary strengths of each component, are vital for composites to overcome limitations posed by single elemental materials. Among these, metal-elastomer nanophases are particularly important, holding various practical applications for stretchable electronics. However, the methodology and understanding of nanophase mixing metals and elastomers are limited due to difficulties in blending caused by thermodynamic incompatibility.

View Article and Find Full Text PDF

Porous thermoelectric materials offer exciting prospects for improving the thermoelectric performance by significantly reducing the thermal conductivity. Nevertheless, porous structures are affected by issues, including restricted enhancements in performance attributed to decreased electronic conductivity and degraded mechanical strength. This study introduces an innovative strategy for overcoming these challenges using porous BiSbTe (BST) by combining porous structuring and interface engineering via atomic layer deposition (ALD).

View Article and Find Full Text PDF

Transport measurement, which applies an electric field and studies the migration of charged particles, i.e., the current, is the most widely used technique in condensed matter studies.

View Article and Find Full Text PDF

The discovery of the fractional quantum Hall state (FQHS) in 1982 ushered a new era of research in many-body condensed matter physics. Among the numerous FQHSs, those observed at even-denominator Landau level filling factors are of particular interest as they may host quasiparticles obeying non-Abelian statistics and be of potential use in topological quantum computing. The even-denominator FQHSs, however, are scarce and have been observed predominantly in low-disorder two-dimensional (2D) systems when an excited electron Landau level is half filled.

View Article and Find Full Text PDF

Biofuel cells (BFCs) based on enzymatic electrodes hold great promise as power sources for biomedical devices. However, their practical use is hindered by low electron transfer efficiency and poor operational stability of enzymatic electrodes. Here, a novel mediator-free multi-ply BFC that overcomes these limitations and exhibits both substantially high-power output and long-term operational stability is presented.

View Article and Find Full Text PDF

Understanding the initial growth process during atomic layer deposition (ALD) is essential for various applications employing ultrathin films. This study investigated the initial growth of ALD Ir films using tricarbonyl-(1,2,3-η)-1,2,3-tri(-butyl)-cyclopropenyl-iridium and O. Isolated Ir nanoparticles were formed on the oxide surfaces during the initial growth stage, and their density and size were significantly influenced by the growth temperature and substrate surface, which strongly affected the precursor adsorption and surface diffusion of the adatoms.

View Article and Find Full Text PDF

The Wigner crystal, an ordered array of electrons, is one of the very first proposed many-body phases stabilized by the electron-electron interaction. We examine this quantum phase with simultaneous capacitance and conductance measurements, and observe a large capacitive response while the conductance vanishes. We study one sample with four devices whose length scale is comparable with the crystal's correlation length, and deduce the crystal's elastic modulus, permittivity, pinning strength, etc.

View Article and Find Full Text PDF

The ground state of two-dimensional electron systems (2DESs) at low Landau level filling factors (ν≲1/6) has long been a topic of interest and controversy in condensed matter. Following the recent breakthrough in the quality of ultrahigh-mobility GaAs 2DESs, we revisit this problem experimentally and investigate the impact of reduced disorder. In a GaAs 2DES sample with density n=6.

View Article and Find Full Text PDF

Two-dimensional electrons confined to GaAs quantum wells are hallmark platforms for probing electron-electron interactions. Many key observations have been made in these systems as sample quality has improved over the years. Here, we present a breakthrough in sample quality via source-material purification and innovation in GaAs molecular beam epitaxy vacuum chamber design.

View Article and Find Full Text PDF

We have developed a scanning photoluminescence technique that can directly map out the local two-dimensional electron density with a relative accuracy of ∼2.2 × 10 cm. The validity of this approach is confirmed by the observation of the expected density gradient in a high-quality GaAs quantum well sample that was not rotated during the molecular beam epitaxy of its spacer layer.

View Article and Find Full Text PDF

We demonstrate that ZnO films grown by atomic layer deposition (ALD) can be employed as a substrate to explore the effects of electrical conductivity on cell adhesion, proliferation, and morphogenesis. ZnO substrates with precisely tunable electrical conductivity were fabricated on glass substrates using ALD deposition. The electrical conductivity of the film increased linearly with increasing duration of the ZnO deposition cycle (thickness), whereas other physical characteristics, such as surface energy and roughness, tended to saturate at a certain value.

View Article and Find Full Text PDF

Controlling the orientations of nanomaterials on arbitrary substrates is crucial for the development of practical applications based on such materials. The aligned epitaxial growth of single-walled carbon nanotubes (SWNTs) on specific crystallographic planes in single crystalline sapphire or quartz has been demonstrated; however, these substrates are unsuitable for large scale electronic device applications and tend to be quite expensive. Here, we report a scalable method based on graphoepitaxy for the aligned growth of SWNTs on conventional SiO₂/Si substrates.

View Article and Find Full Text PDF