Publications by authors named "Yoon Ho Daniel Lee"

Optical frequency combs are a revolutionary light source for high-precision spectroscopy because of their narrow linewidths and precise frequency spacing. Generation of such combs in the mid-infrared spectral region (2-20 μm) is important for molecular gas detection owing to the presence of a large number of absorption lines in this wavelength regime. Microresonator-based frequency comb sources can provide a compact and robust platform for comb generation that can operate with relatively low optical powers.

View Article and Find Full Text PDF

We demonstrate the modulation of silicon ring resonators at RF carrier frequencies higher than the resonance linewidth by coupling adjacent free-spectral-range (FSR) resonance modes. In this modulator scheme, the modulation frequency is matched to the FSR frequency. As an example, we demonstrate a 20 GHz modulation in a silicon ring with a resonance linewidth of only 11.

View Article and Find Full Text PDF

We demonstrate gigahertz electro-optic modulator fabricated on low temperature polysilicon using excimer laser annealing technique compatible with CMOS backend integration. Carrier injection modulation at 3 Gbps is achieved. These results open up an array of possibilities for silicon photonics including photonics on DRAM and on flexible substrates.

View Article and Find Full Text PDF

We demonstrate photodiodes in deposited polycrystalline silicon at 1550 nm wavelength with 0.15 A/W responsivity, 40 nA dark current, and gigahertz time response. Subband absorption is mediated by defects that are naturally present in the polycrystalline material structure.

View Article and Find Full Text PDF