Publications by authors named "Yoojung Jang"

Dissolving microneedle (DMN) is referred to a microscale needle that encapsulates drug(s) within a biodegradable polymer matrix and delivers it into the skin in a minimally invasive manner. Although vast majority of studies have emphasized DMN as an efficient drug delivery system, the activity of DMN-encapsulated proteins or antigens can be significantly affected due to a series of thermal, physical and chemical stress factors during DMN fabrication process and storage period. The objective of this study is to evaluate the effects of DMN fabrication parameters including polymer type, polymer concentration, fabrication and storage temperature, and drying conditions on the activity of the encapsulated therapeutic proteins by employing lysozyme (LYS) as a model protein.

View Article and Find Full Text PDF

Dissolving microneedles (DMNs) are microscopic needles capable of delivering encapsulated compounds and releasing them into the skin in a minimally invasive manner. Most studies indicate that encapsulating therapeutics in DMNs is an efficacious approach; however, the importance of evaluating the activity of encapsulated compounds, during the fabrication process, has not been examined in detail. Conducting an analysis of thermal, chemical, and physical stress factors, including temperature, pH, and the interaction of the polymer and therapeutics mixture during preparation, is essential for retaining the activity of encapsulated therapeutics during and after fabrication.

View Article and Find Full Text PDF

A substituted benzamide, amisulpride is an atypical antipsychotic and a specific antagonist for dopamine D2 and D3 receptors. The prandial effect on amisulpride absorption remains unclear, therefore, this study was designed to investigate the effect of food on the systemic exposure to amisulpride in healthy volunteers. The study was a randomized, two-way crossed trial in which a single oral dose of amisulpride was administered on two occasions, with 7-days washout period between each drug administration.

View Article and Find Full Text PDF