Chronic inflammatory gastric reflux alters the esophageal microenvironment and induces metaplastic transformation of the epithelium, a precancerous condition termed Barrett's esophagus (BE). The microenvironmental niche, which includes the extracellular matrix (ECM), substantially influences cell phenotype. ECM harvested from normal porcine esophageal mucosa (eECM) was formulated as a mucoadhesive hydrogel, and shown to largely retain basement membrane and matrix-cell adhesion proteins.
View Article and Find Full Text PDFAlarmins, sequestered self-molecules containing damage-associated molecular patterns, are released during tissue injury to drive innate immune cell proinflammatory responses. Whether endogenous negative regulators controlling early immune responses are also released at the site of injury is poorly understood. Herein, we establish that the stromal cell-derived alarmin interleukin 33 (IL-33) is a local factor that directly restricts the proinflammatory capacity of graft-infiltrating macrophages early after transplantation.
View Article and Find Full Text PDFHydrogels composed of extracellular matrix (ECM) have been used as a substrate for 3D organoid culture, and in numerous preclinical and clinical applications to facilitate repair and reconstruction of a variety of tissues. However, these ECM hydrogel materials are fabricated using lengthy methods that have focused on enzymatic digestion of the ECM with an acid protease in an acidic solution; or the use of chaotropic extraction buffers and dialysis procedures which can affect native protein structure and function. Herein we report a method to prepare hydrogels from ECM bioscaffolds using ultrasonic cavitation.
View Article and Find Full Text PDFBiomaterials composed of extracellular matrix (ECM) provide both mechanical support and a reservoir of constructive signaling molecules that promote functional tissue repair. Recently, matrix-bound nanovesicles (MBVs) have been reported as an integral component of ECM bioscaffolds. Although liquid-phase extracellular vesicles (EVs) have been the subject of intense investigation, their similarity to MBV is limited to size and shape.
View Article and Find Full Text PDFThe regenerative healing response of injured skeletal muscle is dependent upon an appropriately timed switch from a local type-I to a type-II immune response. Biologic scaffolds derived from extracellular matrix (ECM) have been shown to facilitate a macrophage phenotype transition that leads to downstream site-appropriate functional tissue deposition and myogenesis. However, the mechanisms by which ECM directs the switching of immune cell phenotype are only partially understood.
View Article and Find Full Text PDF