We performed numerical analysis and design parameter optimization of a silicon-based grating waveguide refractive index (RI) sensor. The performance of the grating waveguide RI sensor was determined by the full-width at half-maximum (FWHM) and the shift in the resonance wavelength in the transmission spectrum. The transmission extinction, a major figure-of-merit of an RI sensor that reflects both FWHM and resonance shift performance, could be significantly improved by the proper determination of three major grating waveguide parameters: duty ratio, grating period, and etching depth.
View Article and Find Full Text PDFWe numerically demonstrated the characteristics of a functional hydrogel layer on a silicon-based grating waveguide for a simple, cost-effective refractive index (RI) biochemical sensor. The RI of the functional hydrogel layer changes when a specific biochemical interaction occurs between the hydrogel-linked receptors and injected ligand molecules. The transmission spectral profile of the grating waveguide shifts depends on the amount of RI change caused by the functional layer.
View Article and Find Full Text PDF