Publications by authors named "Yoo-Kyung Koh"

Lipin1 expression was induced at a late stage of differentiation of 3T3-L1 preadipocytes and maintained at high levels in mature adipocytes. Knockdown of expression of lipin1 by small interfering RNA in 3T3-L1 preadipocytes almost completely inhibited differentiation into adipocytes, whereas overexpression of lipin1 accelerated adipocyte differentiation, demonstrating that lipin1 is required for adipocyte differentiation. In mature adipocytes, transfection of lipin1-small interfering RNA decreased the expression of adipocyte functional genes, indicating the involvement of lipin1 in the maintenance of adipocyte function.

View Article and Find Full Text PDF

KLF5 (Krüppel-like factor 5) is a zinc-finger transcription factor that plays a critical role in the regulation of cellular signalling involved in cell proliferation, differentiation and oncogenesis. In the present study, we showed that KLF5 acts as a key regulator controlling the expression of FASN (fatty acid synthase) through an interaction with SREBP-1 (sterol-regulatory-element-binding protein-1) in the androgen-dependent LNCaP prostate cancer cell line. The mRNA level of KLF5 increased when cells were treated with a synthetic androgen, R1881.

View Article and Find Full Text PDF

Expression of the HER2 oncogene is increased in approximately 30% of human breast carcinomas and is closely correlated with the expression of fatty acid synthase (FASN). In the present study, we determined the mechanism by which FASN and acetyl-CoA carboxylase alpha (ACCalpha) could be induced by HER2 overexpression. SK-BR-3 and BT-474 cells, breast cancer cells that overexpress HER2, expressed higher levels of FASN and ACCalpha compared with MCF-7 and MDA-MB-231 breast cancer cells in which HER2 expression is low.

View Article and Find Full Text PDF

The mechanism of how PPARgamma decrease gluconeogenic gene expressions in liver is still unclear. Since PPARgamma is a transcriptional activator, it requires a mediator to decrease the transcription of gluconeogenic genes. Recently, SHP has been shown to mediate the bile acid-dependent down regulation of gluconeogenic gene expression in liver.

View Article and Find Full Text PDF