Here we report the fabrication of a noncontact pulse oximeter system based on a dual-wavelength imaging system and its oxygen saturation monitoring performance during wound healing. The dual-wavelength imaging system consists of 660 nm and 940 nm light-emitting diodes and a multi-spectral camera that simultaneously accepts visible and near-infrared images. Using the proposed system, images were acquired at 30 fps at both wavelengths, and photoplethysmography signals were extracted by specifying a specific region in the images.
View Article and Find Full Text PDFWe report real-time monitoring of colorectal cancer, lymph node metastasis of colorectal cancer cells, and tumor growth inhibition through photodynamic therapy (PDT) using a near-infrared fluorescence diagnostic-therapy system with a light source for PDT and a fucoidan-based theranostic nanogel (CFN-gel) with good accumulation efficiency in cancer cells. To confirm the effect of the fabricated system and developed CFN-gel, in vitro and in vivo experiments were performed. Chlorin e6 (Ce6) and 5-aminolevulinic acid (5-ALA) were used for comparison.
View Article and Find Full Text PDFFusarium graminearum is the causal agent of Fusarium head blight in cereal crops. As in other filamentous ascomycetes, F. graminearum contains genes encoding putative hydrophobins, which are small secreted amphiphilic proteins with eight conserved cysteine residues.
View Article and Find Full Text PDFSecondary metabolism is intimately linked to developmental processes in filamentous fungi. In a previous study, we revealed that several polyketide synthase (PKS) genes, including FgPKS7, are specifically induced during formation of the sexual fruiting body (perithecium) in the cereal pathogen Fusarium graminearum. The function of PKS7, which is essential for perithecial development and hyphal growth, is interchangeable between two phylogenetically related species, F.
View Article and Find Full Text PDFDespite being toxic at a high concentrations, reactive oxygen species (ROS) play a pivotal role as signaling molecules in responses to stress and regulation of plant development. The mitochondrial electron transport chain (ETC) is the major source of ROS in cells. Although the regulation of ROS in mitochondria has been well elucidated, the protein-protein interaction-based regulation of ETC members has not been well elucidated.
View Article and Find Full Text PDFPlant thioredoxins (Trxs) act as antioxidants and function as redox regulators in the chloroplast. Although the regulation of ROS in chloroplasts is well elucidated, the precise regulation mechanism of Trx remains unknown. Here, we characterize a novel chloroplast protein, Lon domain-containing protein 1 (LCP1), which contains only a Lon domain, the precise function of which is not known.
View Article and Find Full Text PDFDefective lysosomal function defines many neurodegenerative diseases, such as neuronal ceroid lipofuscinoses (NCL) and Niemann-Pick type C (NPC), and is implicated in Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD-TDP) with progranulin (PGRN) deficiency. Here, we show that PGRN is involved in lysosomal homeostasis and lipid metabolism. PGRN deficiency alters lysosome abundance and morphology in mouse neurons.
View Article and Find Full Text PDFRecent studies suggest that the microprocessor (Drosha-DGCR8) complex can be recruited to chromatin to catalyze co-transcriptional processing of primary microRNAs (pri-miRNAs) in mammalian cells. However, the molecular mechanism of co-transcriptional miRNA processing is poorly understood. Here we find that HP1BP3, a histone H1-like chromatin protein, specifically associates with the microprocessor and promotes global miRNA biogenesis in human cells.
View Article and Find Full Text PDFCystathionine β-synthase (CBS) domains are small intracellular modules that can act as binding domains for adenosine derivatives, and they may regulate the activity of associated enzymes or other functional domains. Among these, the single CBS domain-containing proteins, CBSXs, from Arabidopsis thaliana, have recently been identified as redox regulators of the thioredoxin system. Here, the crystal structure of CBSX2 in complex with adenosine monophosphate (AMP) is reported at 2.
View Article and Find Full Text PDFWe have characterized the function of a plant R2R3-MYB transcription factor, Arabidopsis thaliana MYB20 (AtMYB20). Transgenic plants overexpressing AtMYB20 (AtMYB20-OX) enhanced salt stress tolerance while repression lines (AtMYB20-SRDX) were more vulnerable to NaCl than wild-type plants. Following NaCl treatment, the expressions of ABI1, ABI2 and AtPP2CA, which encode type 2C serine/threonine protein phosphatases (PP2Cs) that act as negative regulators in abscisic acid (ABA) signaling, were suppressed in AtMYB20-OX but induced in AtMYB20-SRDX.
View Article and Find Full Text PDFAnther formation and dehiscence are complex pivotal processes in reproductive development. The secondary wall thickening in endothecial cells of the anther is a known prerequisite for successful anther dehiscence. However, many gaps remain in our understanding of the regulatory mechanisms underlying anther dehiscence in planta, including a possible role for jasmonic acid (JA) and H(2)O(2) in secondary wall thickening of endothecial cells.
View Article and Find Full Text PDFArabidopsis thaliana Cell Growth Defect factor 1 (Cdf1) has been implicated in promotion of proapoptotic Bax-like cell death via the induction of reactive oxygen species (ROS). Here we report a conserved function of a chloroplast-targeting Cdf-related gene Responsive to Senescence (CRS) using CRS overexpression and loss of function in plants as well as CRS heterologous expression in yeast. CRS expression was strongly induced in senescent leaves, suggesting its main functions during plant senescence.
View Article and Find Full Text PDFThe single cystathionine β-synthase (CBS) pair proteins from Arabidopsis thaliana have been identified as being a redox regulator of the thioredoxin (Trx) system. CBSX1 and CBSX2, which are two of the six Arabidopsis cystathione β-synthase domain-containing proteins that contain only a single CBS pair, have close sequence similarity. Recently, the crystal structure of CBSX2 was determined and a significant portion of the internal region was disordered.
View Article and Find Full Text PDFWe recently determined that CBSX proteins, which have only one pair of cystathionine β-synthase (CBS) domains, directly regulate the activation of thioredoxins and thereby control cellular H2O2 levels and modulate both plant development and growth. The Arabidopsis genome contains six CBSXs, and these are localized to different subcellular compartments‑ CBSX1 and CBSX2 in the chloroplast, CBSX3 in the mitochondria, CBSX4 in the cytosol, and CBSX5 and CBSX6 in the endoplasmic reticulum. The CBSXs have been identified in prokaryotes and plants, but not in animals.
View Article and Find Full Text PDFPlant thioredoxins (Trxs) participate in two redox systems found in different cellular compartments: the NADP-Trx system (NTS) in the cytosol and mitochondria and the ferredoxin-Trx system (FTS) in the chloroplast, where they function as redox regulators by regulating the activity of various target enzymes. The identities of the master regulators that maintain cellular homeostasis and modulate timed development through redox regulating systems have remained completely unknown. Here, we show that proteins consisting of a single cystathionine β-synthase (CBS) domain pair stabilize cellular redox homeostasis and modulate plant development via regulation of Trx systems by sensing changes in adenosine-containing ligands.
View Article and Find Full Text PDFCaleosins or related sequences have been found in a wide range of higher plants. In Arabidopsis, seed-specific caleosins are viewed as oil-body (OB)-associated proteins that possess Ca(2+)-dependent peroxygenase activity and are involved in processes of lipid degradation. Recent experimental evidence suggests that one of the Arabidopsis non-seed caleosins, AtCLO3, is involved in controlling stomatal aperture during the drought response; the roles of the other caleosin-like proteins in Arabidopsis remain largely uncharacterized.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
September 2008
Cystathione beta-synthase domain-containing protein 2 (CDCP2) from Arabidopsis thaliana has been overexpressed and purified to homogeneity. As an initial step towards three-dimensional structure determination, crystals of recombinant CDCP2 protein have been obtained using polyethylene glycol 8000 as a precipitant. The crystals diffracted to 2.
View Article and Find Full Text PDFCytokinins are essential hormones in plant development. Arabidopsis histidine-containing phosphotransfer proteins (AHPs) are mediators in a multistep phosphorelay pathway for cytokinin signaling. The exact role of AHP4 has not been elucidated.
View Article and Find Full Text PDF