Publications by authors named "Yoo-Jin Ghang"

Reported here are new platinum(IV) (Pt(IV)) complexes bearing ferrocene (Fc) moieties. These systems differ from one another only by the nature of the functional group (ester vs amide) connecting the linker to the Fc subunits. This minor structural variation (one atom difference) leads to major differences in solubility, stability, and antiproliferative activity against lung (A549) cancer cells.

View Article and Find Full Text PDF

Traditional (1D, 2D, and 3D) codes are widely used to provide convenient readouts of encoded information. However, manipulating and transforming the encoded information is typically difficult to achieve. Here, the preparation of three fluorescent (blue, green, and red) hydrogels containing both tetracationic receptor-anion recognition motifs and gel-specific fluorophores is reported, which may be used as building blocks to construct through physical adhesion fluorescent color 3D codes (Code A, Code B, and Code C) that may be read out by a smartphone.

View Article and Find Full Text PDF

The exocyst complex regulates the last steps of exocytosis, which is essential to organisms across kingdoms. In humans, its dysfunction is correlated with several significant diseases, such as diabetes and cancer progression. Investigation of the dynamic regulation of the evolutionarily conserved exocyst-related processes using mutants in genetically tractable organisms such as Arabidopsis thaliana is limited by the lethality or the severity of phenotypes.

View Article and Find Full Text PDF

Water-soluble deep cavitands embedded in a supported lipid bilayer are capable of anchoring ATRP initiator molecules for the in situ synthesis of primary amine-containing polymethacrylate patches at the water:membrane interface. These polymers can be derivatized in situ to incorporate fluorescent reporters, allow selective protein recognition, and can be applied to the immobilization of nonadherent cells at the bilayer interface.

View Article and Find Full Text PDF

An anionic self-folding deep cavitand is capable of immobilizing unmodified proteins and enzymes at a supported lipid bilayer interface, providing a simple, soft bioreactive surface that allows enzymatic function under mild conditions. The adhesion is based on complementary charge interactions, and the hosts are capable of binding enzymes such as trypsin at the bilayer interface: the catalytic activity is retained upon adhesion, allowing selective reactions to be performed at the membrane surface.

View Article and Find Full Text PDF

Self-folding deep cavitands embedded in a supported lipid bilayer are capable of recognizing suitably labeled proteins at the bilayer interface. The addition of a choline derived binding "handle" to a number of different proteins allows their selective noncovalent recognition, with association constants on the order of 10(5) M(-1). The proteins are displayed at the water:bilayer interface, and a single binding handle allows recognition of the large, charged protein by a small molecule synthetic receptor via complementary shape and charge interactions.

View Article and Find Full Text PDF

The relaxivity of a magnetically responsive Gd complex can be controlled by non-covalent molecular recognition with a water-soluble deep cavitand. Lowered relaxivity is conferred by a self-assembled micellar "off state", and the contrast can be regenerated by addition of a superior guest.

View Article and Find Full Text PDF

A water-soluble synthetic receptor molecule is capable of selective, controlled endocytosis of a specifically tagged target molecule in different types of living human cells. The presence of suitable choline-derived binding handles is essential for the molecular recognition and transport process, allowing selective guest transport and imaging of cancer cells.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session6trkff4oisqp4qh5tfliogbmen5g3nei): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once