Mater Sci Eng C Mater Biol Appl
April 2019
Tissue engineered scaffolds, made of natural derived materials, have the potential to be used in bone regeneration fields due to the biocompatible and biodegradable features. In this study, we propose duck's feet-derived collagen (DC) sponges blended with hydroxyapatite (HAp), incorporated with different concentrations of silymarin (Smn), for improved bone regeneration. The morphological and structural properties of DC/HAp and DC/HAp loaded with 25, 50 and 100 μM of Smn sponges were analyzed using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR).
View Article and Find Full Text PDFCorneal endothelial cells (CEnCs) play a fundamental role in maintaining the transparency of the cornea. CEnCs lose their full proliferating capacity when tissue damages occur. The loss in proliferation rate is associated with corneal edema and decrease in visual acuity, leading in severe cases, to blindness.
View Article and Find Full Text PDFScaffolds mimicking structural and chemical characteristics of the native bone tissues are critical for bone tissue engineering. Herein, we have developed and characterized epigallocatechin gallate/duck's feet collagen/hydroxyapatite (EGCG/DC/HAp) composite sponges that enhanced the bone tissue regeneration. The three-dimensional composite sponges were synthesized by loading various amounts (i.
View Article and Find Full Text PDFBackground: The aim of this study was to investigate the osteogenesis effects of DC and DC/HAp sponge immersed in without and with dexamethasone.
Methods: The experimental groups in this study were DC and DC/HAp sponge immersed in without dexamethasone (Dex(-)DC and Dex(-)-DC/HAp group) and with dexamethasone (Dex(+)-DC and Dex(+)-DC/HAp group). We characterized DC and DC/HAp sponge using compressive strength, scanning electron microscopy (SEM).