Publications by authors named "Yongzhuo Liu"

Microplastics (MPs)-induced changes in soil nutrient cycling and microbial activity may pose a potential risk to soil ecosystem. Although some studies have explored these topics, there is still a large space for exploration and a relative lack of research on the mechanism by which soil health and its functions are affected by these changes. Thus, this study investigated the effects of polyethylene (PE) MPs with two particle sizes (13 μm and 130 μm) at five concentrations (0%, 1%, 3%, 6% and 10%, w/w) on soil biochemical properties and ecosystem function.

View Article and Find Full Text PDF

During chemical looping combustion (CLC) and chemical looping gasification (CLG) of coal, the release, migration, and speciation of mercury in coal are significantly influenced by oxygen-carrier materials; however, the underlying mechanism remains inadequately addressed. In this work, the effect of a typical iron-based oxygen carrier on the release behavior of mercury from a bituminous coal and a lignite was investigated based on the Ontario-Hydro method. It is found that the effect of the iron-based oxygen carrier is attributed to three aspects: the enhanced release rate of mercury from coal, the adsorption of the released mercury, and the oxidization of gaseous Hg into Hg.

View Article and Find Full Text PDF

Power plants emit sulfur dioxide (SO) during combustion, which is typically removed via wet flue gas desulfurization, but this process produces numerous secondary pollutants. Ionic liquids (ILs) can potentially be used to remove SO, but they suffer from poor mass transfer rates. Hydroxyl ammonium ILs are classical cheap ILs that contain electron-rich O and N sites that favor high absorption capacities.

View Article and Find Full Text PDF

Aggregation-caused quenching (ACQ) and poor photostability in aqueous media are two common problems for organic fluorescence dyes which cause a dramatic loss of fluorescence imaging quality and photodynamic therapy (PDT) failure. Herein, a local hydrophobic cage is built up inside near-infrared (NIR) cyanine-anchored fluorescent silica nanoparticles (FSNPs) in which a hydrophobic silane coupling agent (-octyltriethoxysilane, OTES) is doped into FSNPs for the first time to significantly inhibit the ACQ effect and inward diffusion of water molecules. Therefore, the obtained optimal FSNP-C with OTES-modification can provide hydrophobic repulsive forces to effectively inhibit the π-π stacking interaction of cyanine dyes and simultaneously reduce the formation of strong oxidizing species (•OH and HO) in reaction with HO, resulting in the best photostability (fluorescent intensity remained at 90.

View Article and Find Full Text PDF

In this study, a near-infrared (NIR) theranostic photosensitizer was developed based on a heptamethine aminocyanine dye with a long-lived triplet state. This theranostic molecule can be activated by nitroreductase under mild hypoxia to be used in fluorescence imaging and highly efficient photodynamic therapy (PDT) both in 2D and 3D (spheroids) HeLa cell culture models.

View Article and Find Full Text PDF

CaSO is considered to be a potential oxygen carrier for chemical-looping combustion (CLC) due to its cheapness and high oxygen transport capacity. To improve the physicochemical stability of the CaSO oxygen carrier, CaSO composite oxygen carriers supported with clay, cement, and ash separately were prepared. It was found that the attrition resistance of the CaSO oxygen carrier composed of clay and cement improved due to the bond action of clay and cement.

View Article and Find Full Text PDF

Denitrification is one of the most important soil microbial processes leading to the production of nitrous oxide (N2O). The potential changes with metal pollution in soil microbial community for N2O production and reduction are not well addressed. In this study, topsoil samples were collected both from polluted and non-polluted rice paddy fields and denitrifier communities were characterized with molecular fingerprinting procedures.

View Article and Find Full Text PDF

Soil respiration, resulting in decomposition of soil organic carbon (SOC), emits CO2 to the atmosphere and increases under climate warming. However, the impact of heavy metal pollution on soil respiration in croplands is not well understood. Here we show significantly increased soil respiration and efflux of both CO2 and CH4 with a concomitant reduction in SOC storage from a metal polluted rice soil in China.

View Article and Find Full Text PDF

While microbial nitrogen transformations in soils had been known to be affected by heavy metal pollution, changes in abundance and community structure of the mediating microbial populations had been not yet well characterized in polluted rice soils. Here, by using the prevailing molecular fingerprinting and enzyme activity assays and comparisons to adjacent non-polluted soils, we examined changes in the abundance and activity of ammonia oxidizing and denitrifying communities of rice paddies in two sites with different metal accumulation situation under long-term pollution from metal mining and smelter activities. Potential nitrifying activity was significantly reduced in polluted paddies in both sites while potential denitrifying activity reduced only in the soils with high Cu accumulation up to 1300 mg kg-1.

View Article and Find Full Text PDF

Agricultural soils have been increasingly subject to heavy metal pollution worldwide. However, the impacts on soil microbial community structure and activity of field soils have been not yet well characterized. Topsoil samples were collected from heavy metal polluted (PS) and their background (BGS) fields of rice paddies in four sites across South China in 2009.

View Article and Find Full Text PDF

A field experiment was conducted with cultivation of hybrid and conventional cultivars in a rice paddy from China. Rhizosphere soil was sampled and CO(2) flux was measured at tillering (S1), grain filling (S2) and ripening (S3) across the growth stages. Microbial community structure, abundance and activity were analyzed using a combination of functional (enzymes) and denaturing gradient gel electrophoresis (DGGE) and real-time PCR molecular approaches.

View Article and Find Full Text PDF

Taking a long-term fertilized paddy soil in Taihu Lake region as research object, the enzyme activities in <2, 2-20, 20-200, and 200-2000 microm aggregates under no fertilization (NF), chemical fertilization (CF), chemical fertilization plus straw return (CFS), and chemical fertilization plus pig manure (CFM) were investigated. Fertilization promoted the formation of 200-2000 microm aggregates significantly. The enzyme activities differed with aggregates' particle-size.

View Article and Find Full Text PDF