growth of intertwined trinuclear copper complexes (nCu) on a cellulose-derived carbon support (CMC) produced a high-performance electrocatalyst (CMC-nCu) for the oxygen reduction reaction (ORR), which demonstrated superior performance in zinc-air batteries compared to a commercial Pt/C catalyst. This work highlights the importance of copper-based molecular catalysts with rich and intertwined tricopper structures for boosting both ORR activity and stability.
View Article and Find Full Text PDFBioinspired by the active sites of multicopper oxidases (MCOs), bi/multinuclear copper complexes have attracted great attention in promoting catalytic activity for the oxygen reduction reaction (ORR). Herein, we report the preparation of a Cu-N-C electrocatalyst Cu-BPOZ@CNB-400 for efficient ORR, which was obtained by low temperature pyrolysis of a dinuclear 2,5-bis(2-pyridyl)-1,3,4-oxadiazole (BPOZ) copper complex loaded on a N-doped carbon support at 400 °C. Cu-BPOZ@CNB-400 exhibited a half-wave potential () of 0.
View Article and Find Full Text PDFEstimation and tracking of 6DoF poses of objects in images is a challenging problem of great importance for robotic interaction and augmented reality. Recent approaches applying deep neural networks for pose estimation have shown encouraging results. However, most of them rely on training with real images of objects with severe limitations concerning ground truth pose acquisition, full coverage of possible poses, and training dataset scaling and generalization capability.
View Article and Find Full Text PDF