High-strength glass fibre-reinforced composites (H-GFRPs) are widely used in various engineering fields because of their excellent mechanical properties and designability. The mechanical properties of H-GFRPs are more sensitive to temperature and humidity. Under high temperature and humidity conditions, the properties decrease greatly and the dispersion increases.
View Article and Find Full Text PDFDetermination of the fracture angle and maximum exposure value of extended Puck's 3D inter-fiber failure (IFF) criterion is of great importance for predicting the failure mechanism of unidirectional fiber-reinforced composites. In this paper, a reliable semi-analytical algorithm (RSAA) is presented for searching fracture angle and corresponding exposure value for the extended Puck's failure criterion. One hundred million cases are tested for verifying the accuracy of the present and other algorithms on Python using the strength-value-stress-state combinations more universal than those in previous literatures.
View Article and Find Full Text PDFThe high-temperature dynamic compressive properties of a 30 vol.% SiC/6092Al composite, fabricated using powder metallurgy, were experimentally investigated using the split Hopkinson pressure bar system with an electric furnace. Three different ambient temperatures, namely, room temperature, 200 °C, and 350 °C, were adopted, and the dynamic tests of the composite specimens were conducted at strain rates ranging from 1500 to 4500 s.
View Article and Find Full Text PDFWe report a novel Mn-Co-Ni-O (MCN) nanocomposite in which the p-type semiconductivity of Mn-Co-Ni-O can be manipulated by addition of graphene. With an increase of graphene content, the semiconductivity of the nanocomposite can be tuned from p-type through electrically neutral to n-type. The very low effective mass of electrons in graphene facilitates electron tunneling into the MCN, neutralizing holes in the MCN nanoparticles.
View Article and Find Full Text PDFVoids are common defects in 3D woven composites because of the complicated manufacturing processes of the composites. In this study, a micro-meso multiscale analysis was conducted to evaluate the influence of voids on the mechanical properties of three-dimensional orthogonal woven composites. Statistical analysis was implemented to calculate the outputs of models under the different scales.
View Article and Find Full Text PDF