Publications by authors named "Yongxin Ru"

The endoplasmic reticulum(ER)is the largest membranous network serving as a region for protein, lipid and steroid synthesis, transport and storage. Detailed information about ER-cisternae, ER-tubules and rough endoplasmic reticulum (rER) is scarce in human blood cells. This study describes a series of giant inclusions and Auer bodies in promyeloblasts in six patients with acute promyelocytic leukemia (APL), by light microscopy, transmission electron microscopy (TEM) and cytochemical stains.

View Article and Find Full Text PDF

The monocytes in acute monocytic leukemia (AML-M5b) were analyzed by scanning and transmission electron microscopy (SEM and TEM) to understand more fully their structure and origin. By SEM, monocytes exhibited localized expansions of the surface, some of which appeared to bud off as surface vesicles (SVs). Filopodial processes and pseudopodia were also present.

View Article and Find Full Text PDF

Giant inclusions and Auer bodies in promyeloblasts were investigated in a study which included transmission electron microscopy (TEM) for morphology and ultrastructural cytochemistry for myeloperoxidase in 10 patients with acute promyelocytic leukemia (APL). Ultrastructural cytochemistry demonstrated positive myeloperoxidase reactivity in giant inclusions, expanded rER cisternae, Auer bodies and primary granules. TEM revealed that giant inclusions were adorned by degenerated rER membrane, some of them sharing features with Auer bodies.

View Article and Find Full Text PDF

Autoimmune hemolytic anemia (AIHA) is a group of diseases characterized by immune-mediated lysis of mature red blood cells (RBCs). It is mainly classified into primary and secondary types based on etiology and mechanisms underlying autoantibody production. AIHA is diagnosed using morphological observation of bone marrow smears under a light microscope and monospecific direct antiglobulin test to detect hemolysis.

View Article and Find Full Text PDF
Article Synopsis
  • * Hematoxylin-and-eosin (H&E) staining indicated the presence of RRFs, while toluidine blue staining highlighted an irregular structure within these fibers.
  • * Transmission electron microscopy (TEM) showed pronounced mitochondrial abnormalities, including damaged myofibrils and various mitochondrial structures, with specific inclusions linked to mitochondrial degeneration in MELAS syndrome.
View Article and Find Full Text PDF

Peripheral cisternae and double membranes (PCDMs) in erythroid cells are a landmark of type II congenital dyserythropoietic anemia (CDA). To gain further insights into the mechanism of dyserythropoiesis, erythroblasts and erythrocytes in bone marrow were studied in 22 Chinese patients with CDA Ⅱ by transmission electron microscopy. The study demonstrated an increase in all patients in erythroblasts with PCDMs with development from pro-erythroblast to red blood cells.

View Article and Find Full Text PDF

Precision medicine is important in the treatment of acute leukemia (AL). The target therapies of AL provide an opportunity to reduce the mortality of AL. How AL cells differ from their healthy counterparts is the basis for the development of therapies and the outcome of AL patients.

View Article and Find Full Text PDF

Atherosclerosis is a disease in which the arterial intima thickens and transforms into a sclerotic plaque, interfering with normal blood flow and potentially leading to stroke or death. It is divided into three stages: the pre-stage, which is characterized by diffuse intimal thickenings (DITs) and fatty streaks, the early atherosclerotic stage, which is characterized by pathological intimal thickening (PIT), and the late stage, which is characterized by fibroatheromas transformed from PIT. Each stage of atherosclerosis is distinguished by distinct morphological changes, biological changes, and the expression of immune markers at various levels.

View Article and Find Full Text PDF

Thrombocytopenia is a frequent occurrence in a variety of hematopoietic diseases; however, the details of the mechanism leading to low platelet count remain elusive. Megakaryocytes are a series of progenitor cells responsible for the production of platelets. Alterations in megakaryocytes in the bone marrow are a causative factor resulting in thrombocytopenia in varied diseases.

View Article and Find Full Text PDF

To identify the nature of foam cells in atherosclerosis, carotid atherosclerotic plaques (CAPs) from six patients were studied. Hematoxylin-and-eosin, Congo Red and Oil Red O staining were used to study histopathologic alterations in CAPs. CD31, α-smooth-muscle actin (α-SMA), CD68, desmin and S100 were stained immunohistochemically.

View Article and Find Full Text PDF

Interferon regulatory factor 7 (IRF7) is widely studied in inflammatory models. Its effects on malignant progression have been documented mainly from the perspective of the microenvironment. However, its role in leukemia has not been established.

View Article and Find Full Text PDF

Background: The heterogeneity of mitochondrial function is an important feature of hematopoietic cell lineage differentiation, but its stage wise contribution is not adequately studied. To establish a model to compare the lineage differentiation of hematopoietic stem cells (HSCs), hematopoietic progenitor cells (HPCs), and differentiated blood cells, the mitochondrial mass (MM), mitochondrial membrane potential (MMP), reactive oxygen species (ROS), and mitophagy level were analyzed.

Results And Discussion: HSCs had lower mitochondrial metabolic activity than committed progenitor populations, indicated by lower MM, MMP, and ROS and higher mitophagy.

View Article and Find Full Text PDF

A simple and non-invasive detection method for acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) was established by systematically investigating the characteristics of bone marrow supernatants from 61 AML patients, 22 ALL patients, and 5 volunteers without hematological tumors by Raman spectroscopy and orthogonal partial least squares discriminant analysis (OPLS-DA). The control group could be well distinguished from the AML and ALL groups by Raman peaks of 859, 1031, 1437, 1443, 1446, 1579, and 1603 cm and from the AML subtypes groups (AML-M2, AML-M3, AML-M4, and AML-M5) by the Raman peaks of 859, 1221, 1230, 1437, 1443, and 1603 cm, indicating high sensitivity and specificity of the method. Potentially important variables of acute leukemia (AL) prognosis, such as cholesterol, high-density lipoprotein, low-density lipoprotein, adenosine deaminase, and hemoglobin, could be effectively identified by Raman peaks of 1437, 1443, and 1579 cm.

View Article and Find Full Text PDF

Many studies have confirmed that exhaustive exercise has adverse effects on the heart by generating reactive oxygen species (ROS). S100A1 calcium-binding protein A1 (S100A1) is a regulator of myocardial contractility and a protector against myocardial injury. However, few studies have investigated the role of S100A1 in the regulation of myocardial injury induced by exhaustive exercise.

View Article and Find Full Text PDF
Article Synopsis
  • The study examined carotid atherosclerotic plaques (CAPs) from four patients using light and transmission electron microscopy to understand their cellular components better.
  • Light microscopy revealed that CAPs consist of a fibrous cap, an unhealthy core with issues like fibrosis and hemorrhage, and a basal band with altered muscle layers.
  • Ultrastructural analysis showed a variety of cells, including fibroblasts and foam cells, indicating that CAPs originate from the proliferation of multipotential mesenchymal stem cells, leading to degenerated and lipid-rich cells.
View Article and Find Full Text PDF

We are not aware of any reports regarding conservative treatment for leukemia-related chronic subdural hematoma (CSDH). We report our experience with 3 men who were admitted with subdural masses and abnormal leukocyte counts. In two patients, leukemia and CSDH were confirmed on the basis of medical records, mild head trauma, and neuroimaging features.

View Article and Find Full Text PDF

Total body irradiation (TBI) is commonly used in host conditioning regimens for human hematopoietic stem cell (HSC) transplantation to treat various hematological disorders. Exposure to TBI not only induces acute myelosuppression and immunosuppression, but also injures the various components of the HSC niche in recipients. Our previous study demonstrated that radiation-induced bystander effects (RIBE) of irradiated recipients decreased the long-term repopulating ability of transplanted mouse HSCs.

View Article and Find Full Text PDF

There has been an increasing focus on the tumorigenic potential of leukemia initiating cells (LICs) in acute myeloid leukemia (AML). Despite the important role of selective autophagy in the life-long maintenance of hematopoietic stem cells (HSCs), cancer progression, and chemoresistance, the relationship between LICs and selective autophagy remains to be fully elucidated. Sequestosome 1 (SQSTM1), also known as p62, is a selective autophagy receptor for the degradation of ubiquitinated substrates, and its loss impairs leukemia progression in AML mouse models.

View Article and Find Full Text PDF

Mitochondria of hematopoietic stem cells (HSCs) play crucial roles in regulating cell fate and preserving HSC functionality and survival. However, the mechanism underlying HSC regulation remains poorly understood. Here, we identify transcription factor TWIST1 as a novel regulator of HSC maintenance through modulation of mitochondrial function.

View Article and Find Full Text PDF

To understand the behavior and function of bone-marrow mesenchymal cells (BMMCs), we overviewed the morphological presentation of BMMCs in bone-marrow granules (b-BMMCs), isolated BMMCs (i-BMMCs), and BMMCs (c-BMMCs) cultured in H4434 methylcellulose semisolid and MEM media. All samples were derived from bone-marrow aspirates of 30 patients with hematocytopenia. Light microscopy exhibited b-BMMCs and i-BMMCs characterized by abundant cytoplasm and irregular shape in bone-marrow smears, as well as c-BMMCs in culture conditions.

View Article and Find Full Text PDF

To clarify foam cell origination in atherosclerosis, a series of morphologic and ultrastructural alterations of vascular smooth muscle cells (VSMCs) and foam cells were studied by light and electron microscopy in atherosclerotic aortas from hyperlipidemic rabbits induced for 5 weeks. The study exhibited that VSMCs were severely degenerated and damaged, including irregular shapes, expanded mitochondria, aplenty lipid droplets, and disarranged myofilaments in cytoplasm in media adjacent to atheromatic bottoms. Most lipid laden cells shared interphase structures of VSMCs and foam cells, and some dissolved spindle cells contained lipid droplets, lipofuscin, and rod-like CCs in cytoplasm also.

View Article and Find Full Text PDF

Applying somatic cell reprogramming strategies in cancer cell biology is a powerful approach to analyze mechanisms of malignancy and develop new therapeutics. Here, we test whether leukemia cells can be reprogrammed in vivo using the canonical reprogramming transcription factors-Oct4, Sox2, Klf4, and c-Myc (termed as OSKM). Unexpectedly, we discover that OSKM can eradicate leukemia cells and dramatically improve survival of leukemia-bearing mice.

View Article and Find Full Text PDF