Publications by authors named "Yongxiao Chai"

Background: Fowl adenovirus serotype 4 (FAdV-4) is the main pathogen of hepatitis-hydropericardium syndrome (HHS), which brings huge economic losses to the poultry industry worldwide. Fiber-1 protein plays an important role in viral infection and pathogenesis by binding directly to cellular receptors of FAdV-4. In particular, the knob domain of fiber-1 protein has been reported to induce the production of neutralizing antibodies and arouse protection against the lethal challenge of chickens with FAdV-4.

View Article and Find Full Text PDF

Outbreaks of hydropericardium hepatitis syndrome caused by fowl adenovirus serotype 4 (FAdV-4) with a novel genotype have been reported in China since 2015, with significant economic losses to the poultry industry. Fiber2 is one of the important structural proteins on FAdV-4 virions. In this study, the C-terminal knob domain of the FAdV-4 Fiber2 protein was expressed and purified, and its trimer structure (PDB ID: 7W83) was determined for the first time.

View Article and Find Full Text PDF

Objective: To create a novel subunit vaccine that used AuNPs as carriers to enhance immune responses in mice against recombinant classical swine fever virus E2 protein (CSFV E2).

Results: Gold nanoparticles (AuNPs) were successfully coupled to the E2 protein and formed stable particle complexes called E2 conjugated AuNPs (E2-AuNPs). In vitro studies have shown that the E2-AuNPs complex has the same immunogenicity as the E2 protein, and AuNPs can promote the phagocytosis of the E2 protein by antigen-presenting cells (APCs).

View Article and Find Full Text PDF

Influenza A virus (IAV), a deadly zoonotic pathogen, poses a tremendous threat and burden to global health systems. Pigs act as "mixing vessel" hosts to support and generate new pandemic viruses. Preventing the spread of IAV in pigs effectively can delay or even block cross-species transmission.

View Article and Find Full Text PDF

In several parts of China, there have been a large number of hydropericardium syndrome (HPS) outbreaks caused by serotype 4 fowl adenovirus (FAdV-4) in broiler chickens since 2015. These outbreak-associated FAdV-4 strains were distinct from previous circulating strains which did not lead to severe HPS outbreaks. To better understand the molecular epidemiology of the currently circulating FAdV strains for effective diagnosis and treatment of HPS, we isolated 12 HPS outbreak-associated FAdV-4 strains from different regions in central China and investigated their molecular characteristics by performing phylogenetic analyses based on the hexon genes.

View Article and Find Full Text PDF