Brown root rot caused by is a new destructive root disease on many plants such as Gingko, Citrus, kiwifruit, and ramie. The establishment of loop-mediated isothermal amplification (LAMP) technology for detecting can help monitor and control brown root rot quickly, efficiently, and accurately. LAMP technology is known for its simplicity, sensitivity, and speed; and it does not require any specialized equipment - a water bath or a thermoblock is sufficient for isothermal amplifications.
View Article and Find Full Text PDFMol Plant Microbe Interact
November 2020
The oomycete is a causative agent of patch canker, damping-off, and crown, stem, and root rot in many economically important plants. HF1 was isolated in China, where it caused brown root rot of ramie, a fiber crop broadly cultivated in Asia. The genome of HF1 was sequenced by a combination of technologies producing short (Illumina HiSeq X) and long (PacBio RS) reads.
View Article and Find Full Text PDFQuantitative real-time PCR (qPCR) is commonly used for deciphering gene functions. For effective qPCR analyses, suitable reference genes are needed for normalization. The objective of this study is to identify the appropriate reference gene(s) for qPCR analyses of the leaves and roots of ramie (Boehmeria nivea L.
View Article and Find Full Text PDFBackground: MicroRNAs (miRNAs) regulate numerous crucial abiotic stress processes in plants. However, information is limited on their involvement in cadmium (Cd) stress response and tolerance mechanisms in plants, including ramie (Boehmeria nivea L.) that produces a number of economic valuable as an important natural fibre crop and an ideal crop for Cd pollution remediation.
View Article and Find Full Text PDFBackground: Homing endonuclease genes (HEGs) are widely distributed genetic elements in the mitochondrial genomes of a diversity of eukaryotes. Due to their ability to self-propagate within and between genomes, these elements can spread rapidly in populations. Whether and how such elements are controlled in genomes remains largely unknown.
View Article and Find Full Text PDFDrought is the main environmental factor impairing hemp growth and yield. In order to decipher the molecular responses of hemp to drought stress, transcriptome changes of drought-stressed hemp (DS1 and DS2), compared to well-watered control hemp (CK1 and CK2), were studied with RNA-Seq technology. RNA-Seq generated 9.
View Article and Find Full Text PDFPhytocystatins play multiple roles in plant growth, development and resistance to pests and other environmental stresses. A ramie ( L.) phytocystatin gene, designated as , was isolated from a ramie cDNA library and its full-length cDNA was obtained by rapid amplification of cDNA ends (RACE).
View Article and Find Full Text PDFBackground: Fistular leaves frequently appear in Allium species, and previous developmental studies have proposed that the process of fistular leaf formation involves programmed cell death. However, molecular evidence for the role of programmed cell death in the formation of fistular leaf cavities has yet to be reported.
Results: In this study, we characterized the leaf transcriptomes of nine Allium species, including six fistular- and three solid-leaved species.
The ramie moth Cocytodes coerulea Guenée (RM) is an economically important pest that seriously impairs the yield of ramie, an important natural fiber crop. The molecular mechanisms that underlie the ramie-pest interactions are unclear up to date. Therefore, a transcriptome profiling analysis would aid in understanding the ramie defense mechanisms against RM.
View Article and Find Full Text PDFRoot lesion disease, caused by Pratylenchus coffeae, seriously impairs the growth and yield of ramie, an important natural fiber crop. The ramie defense mechanism against P. coffeae infection is poorly understood, which hinders efforts to improve resistance via breeding programs.
View Article and Find Full Text PDFBackground: Ramie fiber extracted from stem bark is one of the most important natural fibers. Drought is a main environment stress which severely inhibits the stem growth of ramie and leads to a decrease of the fiber yield. The drought stress-regulatory mechanism of ramie is poorly understood.
View Article and Find Full Text PDFRamie (Boehmeria nivea L. Gaud) is one of the most important natural fiber crops, and improvement of fiber yield and quality is the main goal in efforts to breed superior cultivars. However, efforts aimed at enhancing the understanding of ramie genetics and developing more effective breeding strategies have been hampered by the shortage of simple sequence repeat (SSR) markers.
View Article and Find Full Text PDFBackground: Ramie fiber, extracted from vegetative organ stem bast, is one of the most important natural fibers. Understanding the molecular mechanisms of the vegetative growth of the ramie and the formation and development of bast fiber is essential for improving the yield and quality of the ramie fiber. However, only 418 expressed tag sequences (ESTs) of ramie deposited in public databases are far from sufficient to understand the molecular mechanisms.
View Article and Find Full Text PDF