Publications by authors named "Yongtian Liang"

Neurodegenerative diseases typically emerge after an extended prodromal period, underscoring the critical importance of initiating interventions during the early stages of brain aging to enhance later resilience. Changes in presynaptic active zone proteins ("PreScale") are considered a dynamic, resilience-enhancing form of plasticity in the process of early, still reversible aging of the Drosophila brain. Aging, however, triggers significant changes not only of synapses but also mitochondria.

View Article and Find Full Text PDF

Caloric restriction and intermittent fasting prolong the lifespan and healthspan of model organisms and improve human health. The natural polyamine spermidine has been similarly linked to autophagy enhancement, geroprotection and reduced incidence of cardiovascular and neurodegenerative diseases across species borders. Here, we asked whether the cellular and physiological consequences of caloric restriction and fasting depend on polyamine metabolism.

View Article and Find Full Text PDF

Cells respond to fluctuating nutrient supply by adaptive changes in organelle dynamics and in metabolism. How such changes are orchestrated on a cell-wide scale is unknown. We show that endosomal signaling lipid turnover by MTM1, a phosphatidylinositol 3-phosphate [PI(3)P] 3-phosphatase mutated in X-linked centronuclear myopathy in humans, controls mitochondrial morphology and function by reshaping the endoplasmic reticulum (ER).

View Article and Find Full Text PDF

Amyloid beta 42 (Abeta42) is the principal trigger of neurodegeneration during Alzheimer's disease (AD). However, the etiology of its noxious cellular effects remains elusive. In a combinatory genetic and proteomic approach using a yeast model to study aspects of intracellular Abeta42 toxicity, we here identify the HSP40 family member Ydj1, the yeast orthologue of human DnaJA1, as a crucial factor in Abeta42-mediated cell death.

View Article and Find Full Text PDF

Spermidine is a natural polyamine, central to cellular homeostasis and growth, that promotes macroautophagy/autophagy. The polyamine pathway is highly conserved from bacteria to mammals and spermidine (prominently found in some kinds of aged cheese, wheat germs, nuts, soybeans, and fermented products thereof, among others) is an intrinsic part of the human diet. Apart from nutrition, spermidine is available to mammalian organisms from intracellular biosynthesis and microbial production in the gut.

View Article and Find Full Text PDF

Complex neural and brain functions are executed through structural and functional alterations of synapses and neurons. Neuronal compartmentalization requires neurons to allocate mitochondria and proteins in a spatiotemporal manner to allow their plasticity, function and homeostasis. Importantly, mitochondria are known to interact with and modulate synaptic activities through their ATP supply, calcium buffering and signaling abilities.

View Article and Find Full Text PDF

Mitochondrial function declines during brain aging and is suspected to play a key role in age-induced cognitive decline and neurodegeneration. Supplementing levels of spermidine, a body-endogenous metabolite, has been shown to promote mitochondrial respiration and delay aspects of brain aging. Spermidine serves as the amino-butyl group donor for the synthesis of hypusine (N-[4-amino-2-hydroxybutyl]-lysine) at a specific lysine residue of the eukaryotic translation initiation factor 5A (eIF5A).

View Article and Find Full Text PDF
Article Synopsis
  • In 2008, guidelines were established for researching autophagy, which has since gained significant interest and new technologies, necessitating regular updates to monitoring methods across various organisms.
  • The new guidelines emphasize selecting appropriate techniques to evaluate autophagy while noting that no single method suits all situations; thus, a combination of methods is encouraged.
  • The document highlights that key proteins involved in autophagy also impact other cellular processes, suggesting genetic studies should focus on multiple autophagy-related genes to fully understand these pathways.
View Article and Find Full Text PDF

Protein homeostasis (proteostasis) is crucial to the maintenance of neuronal integrity and function. As the contact sites between neurons, synapses rely heavily on precisely regulated protein-protein interactions to support synaptic transmission and plasticity processes. Autophagy is an effective degradative pathway that can digest cellular components and maintain cellular proteostasis.

View Article and Find Full Text PDF

The maintenance of neuronal homeostasis is severely threatened by aging, probably partially due to compromised autophagic clearance. Hence, rejuvenating autophagy in aging neurons is considered a promising strategy to restore cognitive performance. Research in recent years has shown that autophagosome biogenesis takes place mainly in distal axons and, thus, close to presynaptic specializations, and that efficient macro-autophagy is essential for neuronal homeostasis and survival.

View Article and Find Full Text PDF